
SOVIET PHYSICS JETP VOLUME 17, NUMBER 2 AUGUST, 1963 

PROPAGATION OF WAVES IN A MEDIUM WITH STRONG FLUCTUATION OF THE 

REFRACTIVE INDEX 

V.I. TATARSKII and M. E. GERTSENSHTEIN 

Institute of Atmospheric Physics, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor August 18, 1962 

J. Exptl. Theoret. Phys. (U.S.S.R.) 44, 676-685 (February, 1963) 

The Green's function is determined for an infinite medium with strong small-scale fluctua­
tions of the refractive index. The solution is derived in a manner similar to the renormaliza­
tion method in field theory. An expression is deduced for the effective refractive index of the 
medium and the attenuation coefficient. 

INTRODUCTION 

THE parameters of dielectrics are measured by 
transmitting in free space from an antenna 
(radiator) a radio or sound beam, that passes 
through the substance, and the amplitude and phase 
of the transmitted and reflected beams are meas­
ured [1-3]. In the reduction of the measurement 
data, the investigated specimen is assumed to be 
homogeneous. It is therefore of interest to ascer­
tain the extent to which random inhomogeneities of 
the specimen influence the measurement results. 

The effect of weak inhomogeneities is readily 
determined by successive approximation; we are 
interested in strong inhomogeneities such as occur, 
for example, near the critical point [4]. Measure­
ment of the velocity of sound in this region can 
apparently yield the singularities of the thermo­
dynamic potentials near the critical point [4-sJ 
The effect is distorted, however, by strong fluctua­
tions with a correlation law that depends on the 
singularities of the potentials. 

However, the most interesting case of a strongly 
inhomogeneous dielectric is the non-equilibrium 
plasma in thermonuclear fusion apparatus [s, 7]. 

Oscillograms of the current discharge or of its 
magnetic field, obtained with a Rogowski belt, 
measure integral quantities [s], whereas the micro­
wave beam yields information regarding the proc­
esses that occur only on its path, and can detect, 
by the same token, the regions where the insta­
bility arises. A monochromatic signal passing 
through a non-stationary plasma becomes modu­
lated, with the frequencies and character of the 
modulation of the transmitted and scattered fields 
depending on the processes in the plasma. 

As seen by the propagating wave, the plasma is 
an inhomogeneous anisotropic medium with time-

varying average parameters and strong fluctuations 
of these parameters, so that the complete solution 
of the problem is extremely complicated. In the 
present paper we consider a simpler problem, 
that of the propagation of a scalar wave in a homo­
geneous isotropic medium with slow ( quasistatic) 
fluctuations, which are not small. 

The equation for the field !/J has the form 

~'i' +k2 [I +e'(r)l'i' = f(r), 'Jl-e-iwt, 

where E' ( r ) denotes the fluctuating part of the 
dielectric constant ( E' = 0); the mean value of the 
dielectric constant is customarily assumed equal 
to unity, i.e., its deviation from unity is included 
in k. We assume that the medium has damping, 
i.e., y = Im k > 0. Generally speaking, the wave 
equation in an inhomogeneous medium contains the 
first derivatives of the function !/J, which we have 
left out, since their inclusion does not change the 
character of the results. 

Putting k2E' ( r) = - ~ ( r ), we write the equation 
for !/J in the form 

L 0'Jl = (~ + k2) 'i' = £ (r) 'i' + f (r). (1) 

1. SOLUTION OF EQUATION (1) IN OPERATOR 
FORM 

Let M0 be the integral operator inverse to L0: 

M 0f (r) = ~ 00 (r- r') f (r') tflr'; 

G ( _ ') __ exp (ik I r - r' I ) (2) 
o r r - 4:rt I r - r' I • 

Then (1) can be represented in the form 

There is a well known solution of (3) in the form of 
a power series in the operator M0; it is obtained 

458 )' 
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from the equation ( 1 - M0~ )1/! = M0f with the aid 
of the expansion for ( 1 - Mo~ )-t: 

00 (4) 'Jl = :2; (Most M of. 

Solution (4) is a known perturbation-theory 
series, which can be used only in the case of weak 
fluctuations [a]. It turns out, however, that an ex­
pression can be obtained for the mean value of 1/! 

in the form of a series in powers of some 'renor­
malized' operator Mt, which already takes account 
of multiple scattering. 

Let us put l/J = lJi + qJ, qi = 0. In addition to 
strictly mathematical convenie~ce, the resolution 
of the field into a regular part 1/! and a random 
part qJ is consistent with the measurement proce­
dure. The random part describes the modulation 
of the direct and scattered waves, due to fluctua­
tions in the volume. Averaging (1), we obtain 

Lo\il = s((l + f, 
and after subtracting (5) from (1) 

L0qJ = s'lJ + s((l, 

(5) 

(6) 

where we put F = F - F. Let us apply the opera­
tor Mo to (6); introducing the random operator K 
in accordance with the equation 

KF '= M 0sF = Mo (sF - ~F), (7) 

we obtain 

qJ = K\1) + K((l (8) 
~ 

(we used the equation M0~!iJ = Mo~!i! = K!i!) · 
The introduced operator has an important prop­

erty: Knf = 0 for any function f and for any n. 
Indeed 

K"l = KK"- 1f = Mo lsK'Ht- sK"-ltl = 0. 

Since average values are subtracted every time 
that the operator K is applied, the values Knf are 
much smaller than the corresponding values of 
( Mo~ )nf. 

Multiplying (8) by ~ and averaging, we obtain 
~ qJ = ~Kifi + ~KqJ. Substituting the obtained value of 
~cp in (5), we get 

L 11j) = (L 0 - sK) ,P = f + sK((l. (9) 

The operator Lt = L0 - ~K acting on a non­
random function lji is equal to L0 - ~Mo~ and is 
integro-differential, diagonal in the Fourier 
representation, so that the inverse operator Mt 
= Lit can be readily constructed. Acting on (9) by 
means of the operator Mt, we obtain 

(10) 

Equations (8) and (10) form a closed system, 
equivalent to the initial equation (1). Solving this 
system of equations by successive iterations 
(starting with qJ 0 = 0), we obtain the series 

~) M tf + M 1~10M1/ -1-:. M J;;R'3M1/ + 
... + M~~](2MisK2M1/ 

+ MlsK2Mifl\2Ml~l(iMJi +· · ·· 
cp- KM,f + K2Mrf -'- K'1Md' + 

+Ki\11 1 ~K~M 1 / +- K2M1~R2M 1! + · · · 

(11) 

. .. +-KM 1 ~K.'fMJ +K2M 1~K3Jiv'ltf- . . . (12) 

Unlike the series (4) of perturbation theory, 
series (11) and (12) are in powers of the operator 
Mt, and in this connection they have certain advan­
tages, since Mt already describes multiple scat­
tering. 

For the operator Mt we have 

M 1 =-- (L0 - ~M0st 1 == lL 0 (l - Mu~Mu~ )J-l 

w 

=(1- M0sM 0 s)-1 Mo== ~ (MosMos )"Mo. (13) 

n-·o 

Consequently, the operator Mt sums an infinite 
number of terms of perturbation-theory series (4). 
Since we can write the kernel of the operator Mt 
in analytic form (see below), each term of (11) is 
already a sum of an infinite number of components 
taken from (4). The series (11) is expected to 
converge when the series (4) diverges (in particu­
lar, for Gaussian distributions of ~ ) , so that the 
problem can be solved in the case of strong 
(under certain conditions, even infinite) fluctua­
tions. 

The method developed is analogous to the s im­
plest version of the renormalization method of 
field theory. As applied to problems of our type, 
it was already used earlier [9, to, t2J, and the present 

[to] paper is a development of the work of Bourrett 
The latter investigated the homogeneous equation 
(9) for lji in the case of plane waves. We investi­
gate below the region of applicability of the method, 
calculate the scattered field, and give a physical 
interpretation of the result. 

The renormalization process can be continued. 
Iterating (8) N times we obtain 

(14) 

where 

IZ=l 

is a random operator. Multiplying (14) by ~ and 
averaging we obtain ~qJ = ~QN + ~KNcp. After sub-
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stitution in (5) this leads to 
- -N-

LN'I\J = (L0 - ~QN) '1\J = f + ~K <p. (15) 

LN is an N-fold renormalized operator, also 
diagonal in the Fourier representation, so that the 
inverse operator MN = LN can be constructed. 
Applying to (15) the operator MN we obtain 

(16) 

Equations (14) and (16) form a closed system, 
the solution of which can be written in the form of 
series in powers of the operators MN, QN, K, 
analogous to (11) and (12). With increasing order 
of the renormalization, even the first term of such 
a series gives the solution of the problem with suf­
ficient accuracy. The operator M2 sums an infinite 
number of terms, taken from the singly-renor­
malized series (11). It is easy to show that in 
analogy with (13) 

(17) 

MN can be represented in the form of a series 
in powers of the operator MN-1· As can be seen 
from (13), M1 contain only pair correlations, in 
which connection the method using M1 is called 
bilocal in [to]. In expression (17) for M2 are con­
tained, in addition to pair correlations, also triple 
correlations. In exactly the same way, MN con­
tains correlations of order N + 1, so that this 
operator takes into account N + 1 point interactions. 

2. RENORMALIZED BILOCAL GREEN'S FUNCTION 

In the case when the fluctuations of E are 
statistically isotropic and Bd r) = BE ( r), it is 
possible to carry out in the integrals of (20) the 
integration over the angle variables, as a result 
of which we obtain 

00 

Gr(R) =2n~R ~ x[k2-x2 
0 

00 -1 

+ ~ ~ B, (r) elkr sin xr dr J sin xR dx. (20a) 
0 

Formulas (20) and (20a) give an explicit expres­
sion for the kernel of the operator M1. G1 ( R) is 
a nonlinear functional of the correlation function 
BE ( r). Specifying, for example, the correlation 
function BE ( r) in the form 

(21) 

where 0! = ( 81T r1,13 and ao is the integral corre­
lation scale, defined in the general case by the 
equation 

a~ = B~1(0) ~ B, (r) d3r, 

we obtain for G1 ( R) the formula 

(22) 

(23) 

For the case k4a~c? « 1, which will be con­
sidered in greater detail, we have I C2l « I Ctl: 

OF EQUATION (1) C1 = - l/4:rt, C2 = - ~a~a4cP/2:rt, (24) 

Let us find an explicit expression for the opera­
tor M1. For this purpose it is necessary to con­
sider the equation L1g = L0g - ~M0~g = f in ex­
panded form 

6-g + k2g- k4 \ G0 (r- r') e'(r) e'(r') g (r') d3r' = f (r). 
.• (18) 

We assume that the fluctuations of E' are statis­
tically homogeneous, i.e., we assume that 
,::' ( r) E' ( r' ) = BE ( r - r' ) depends only on the 
difference in the arguments. 

Equation (18) is solved by Fourier transforma­
tion. Its solution has the form 

g (r) = M 1f = ~ G1 (r- r') f (r') d3r'; 

GI(R) = s~·~et•~ [k2 -x2 

- k4 ~Go (rr) B, (rr)e-txr,darrrldax. 

(19) 

(20) 

In the case u = 0 (no fluctuations), it follows 
from the general expression (20) that G1 (R) 
= G0 (R). 

3. LIMITS OF APPLICABILITY OF THE 
BILOCAL METHOD 

Using the bilocal Green's function G1 (R ), we 
can write down the series (11) for Iii in the form 

\i) (r) = ~ G tot (r - r') f (r') d3 r; (26) 

Gtot (R) = G1 (R)- k6 ~ ~ ~ G1 (R- rl) 
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+ k8 ~ ~ ~ ~ G1 (R- r1) Go (rl- rz) 

X G0 (r2 - r3) G0 (r3 - r4) G1 (r4) 

X1e' (r1) e' (r2) e' (r3) e' (r4) d3r1 ... d3r4 (27) 

[we have written out only the first term of the 
series (11)]. 

Let us stop to calculate formula (27). The 
mean values of the multiple products e:' ( r) con­
tained in this formula reduce, in the case when 
E' ( r) is a Gaussian random field, to a sum of all 
possible products of the pair correlations [tt]. If 
two factors are contained in the average product 
under the ...., sign, the correlation function corre­
sponding to their product does not enter into the 
sum. In accord with this rule, assuming that 
e:' ( r) is a Gaussian quantity, we have 

e' (r1) e' (r2) e' (r3) e' (r 4) = B. (r1 - r3) B, (r2-r4) 

+B. (r1- r4) B. (r2- ra)· (28) 

Assuming that Be: and G1 ( R) are given by 
relations (21) and (23), let us estimate the integral 
containing the fourth moments. We assume here 
that the following condition is satisfied 

kao< 1, (29) 

i.e., we assume the fluctuation scale to be small. 
The estimates make use of inequality (29), by 
which it can be assumed t~at the function Be: varies 
much more rapidly than the functions G0 and G1, 

i.e., the function Be: in (27) is similar to a 6-
function which is 'smeared out' over a distance on 
the order of a0• (This 'smearing' must be taken 
into account only in those cases when divergent 
integrals are obtained if the unsmeared 6-function 
is substituted ) . 

The requirement that the first nonvanishing 
correction obtained in this manner be small com­
pared with G1 ( R) leads to two limitations 

I (ka0) 7 cr4 1 < 1, 

I kR I < (1 + k2a~a2cr2) '/, I (ka0) 5a4 , 

(30) 

(31) 

where R is the distance within which the solution 
obtained is valid 1 >. 

Let fJ. « 1 be the relative accuracy with which 
(30) is satisfied, i.e., (ka0 ) 7a4 :s fJ.. Then (ka )4a2 
:s ,j kap. « 1, but ( ka0 )3a2 and all the more 
(ka0 ) 2a2 need no longer be small. Recognizing 

l)It can be shown that the use of more complicated renor­
malizations obviates the need for limitation (31). 

that (ka0 )4a2 « 1, we can henceforth use the sim­
plified formulas (24) and (25) for C 1, 2 and Kt,2• 
and since C2 « 1 we need retain only the first 
terms of (23). 

Conditions (30) and (31) can be satisfied also in 
the case of infinite fluctuations, when a2- 00 , pro­
vided only a0 - 0 at the same time. When a2 - oo 

we have (k2a~) - ao so that condition (31) yields 
kR « (ka0)-4a-3 . In order for the condition kR » 1 
not to be violated as a- ao, it is necessary to im­
pose on a0 the limitation 

a~a3 < const, (32) 

satisfaction of which permits the transition to the 
case of infinite fluctuations [condition (30) imposes 
a weaker limitation on a0 ] 2> . 

4. ASYMPTOTIC FORM OF THE BILOCAL 
GREEN'S FUNCTION 

Let us find the asymptotic form of the function 
G1 ( R) for large R, without making the form of the 
function BE ( r) specific. It follows from (20) that 
as R- oo the asymptotic value of G1 (R) is de­
termined by the behavior of the spectrum of this 
function asK- 0. Expanding in (20a) (sinKr)/K 
in a series and retaining only the first term of 
this expansion [the next term of the expansion 
leads upon integration to a small term of order 
( ka0 ) 4v2], we obtain 

00 

G1 (R) = 2n;R ~ x [ k2 -:- X 2 

0 

+ k4 r B. (r) eikrr dr T\in xR dx. 
0 

This expression differs from the spectral expan­
sion of the function G0 ( R) (which is obtained 
from it when BE= 0) only in the fact that it con­
tains in place of k the quantity 

00 1J2 

k' = k [ 1 + k2 ~ B, (r) eikr r dr J . (33) 
0 

Consequently, the asymptotic form of G1 ( R) coin­
cide with G0 (R ), in which k is replaced by k': 

(34) 

A formula such as (33) for a specific correlation 
function was obtained by BourrettCti]. We empha­
size, however, that the Green's function, as can be 
seen from formula (23), has a much more compli-

Zlwe note that if a -+ ""• a. -+ 0, and the relation a2a~ = const 
is retained, we obtain the a-correlation case but condition 
(32) is then violated. 
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cated form than (34), and this difference is essen­
tial at small distances. 

The integral in (33), under the condition ka0 

« 1, is of the order of a2a~, since the difference 
between k' and k, connected with terms of the 
order of k2 a~a2, may not be small. 

Let us put k = p + i y; y « p. Recognizing that 
when ka0 « 1 and when ( ka0 ) 2a2 is arbitrary the 
following inequality is satisfied 

I k2 r sin pre-·rrB, (r) rdr I< II + k2 r cos pre--rrB, (r)rdr I' 
we can expand (34) and approximately represent 
k' in the form 

00 t/ 

ne = [r +P2 ~ cos pr exp (- yr) B, (r) rdrJ'. 
0 

(35) 

(36) 

Here ne is the effective refractive index of the 
fluctuating medium and y e is the effective attenua­
tion 

2n~ -1 a ~ 
Ye = ---r+ .': I sinpre-Y'B,(r)rdr. (37) 

n e -:...ne.J 
0 

In the case pa « 1, which we are considering, 
the integral (37) can be expressed in terms of the 
scale a0 defined by formula (22). Indeed, ne­
glecting the factor e-yr and replacing sin ( pr) by 
pr, we obtain 

~ ;:' pr:;2a3 

(' sin pr e-yrB, (r) rdr ~ p \ B, (r) r2 dr =. -~,-0 , 
j J !n 
() 0 

and (37) assumes the form 

r e = (2n~- 1) ylna + p4a~a2/8nne. (37a) 

The effective attenuation y e consists of two 
components. The first is proportional to the ab­
sorption and includes the effect whereby the effec­
tive absorption path is increased by multiple scat­
tering [the factor ( 2n~ - 1 )/ne > 1]. The second 
component in (37a) is the effective coefficient of 
multiple scattering (its connection with the coeffi­
cient of single scattering will be considered in the 
next section) and describes the transition of the 
energy of the average field into fluctuation energy 
(the increase in the 'entropy' of the system). 

5. CALCULATION OF FIELD FLUCTUATIONS 

Let us consider the scattering of waves by the 
fluctuations of the medium. Assume that a plane 
wave A0eik · r is incident on a certain volume 
filled with strong small-scale fluctuations of the 
refractive index. We are interested in the fluctua-

tion field outside of the scattering volume, due to 
the scattering by the fluctuations inside the volume. 

Let the average field inside the scattering vol­
ume have the form of a plane wave 

where k' = k'k/k. We :mploy formula (8), re­
written in the form 

(jl = !(;jJ + 1(2\j) + ... = (jll +cp2 + •.. ; 

__ ~ (' exp (ik I r- r' [) '( ');;;; ( ') da ' 
cpl - 4:rt .\ I r - r' I e r -r r r , 

11 

• = _!!__ (' (' exp [ik (I r- r' I+ I r'- r"[)] 
(jl. 16:rt2 ,\,\ lr-r'llr'-r"l 

vv 

x e' (r') e' (r") 'iJ (r") d 3r' d 3r". 

(38) 

(39) 

We assume that the point of observation is in 
the Fraunhofer diffraction zone where, as is well 
known, we can assume that I r - r' I = r - m · r'; 
m = r/r, and we can put I r - r' I= r in the de­
nominator of (39). Substituting (38) in (39) and 
then taking the mean square of the modulus of cp 1, 

we obtain 

(40) 

Introducing a new integration variable p = r' 
- r" and integrating with respect to r" to obtain 
the scattering V, we get 

- k4A2V 
(jl1(jl~ = 16:rt~r 2 ~ exp [- i (km- k'm0) p] B. (p) dap, (41) 

v 

where k' = k'm0 and m 0 is the unit vector of the 
incoming wave. 

The quantities k and k' in (41) are complex, a 
manifestation of the change in the incident and 
scattered wave over the length of the scattering 
volume. If these effects are small enough to be 
neglected, we can put k = p and k' = pne· Since 
the correlation function BE decreases rapidly with 
increasing p, the limits of integration in (41) can 
be extended for real k and k' to infinity, so that 
we arrive at 

(42) 

where 
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is the three-dimensional Fourier component of 
the correlation function. 

In the case of statistically isotropic fluctuations 
we have <fiE ( K) = <fiE (I K \ ) and (42) assumes the 
form 

---. 1 4A2 ~~ IJVP1 = 2 rtp oVr-2 <1>, (p r 1 - 2ne cos 8 + n~), (42a) 

where () is the scattering angle and cos e = m 0 • m. 
Expression (42) differs from the analogous 

formula obtained by the small-perturbation 
method in the presence of ne in the argument of 
<fie As a result of this cpfcp 1 is a nonlinear func­
tional of BE ( r). When the fluctuation intensity 
changes, the scattering indicatrix changes its form, 
owing to the change in ne. The second difference 
lies in the fact that the forward scattering is deter­
mined not by the zeroth component of the spectrum, 
as in the theory based on the small-perturbation 
method, but by the spectral component corresponding 
to 

'Xmin = P (ne- 1). 

The differential effective scattering cross sec­
tion is found from (42a) to be 

das (6) = T rtp4V<l>, (p Y 1-2neCOS 6 + n!) do. (43) 

In the case when pa « 1, the spectral density 
<fiE ( K ) is approximately equal to <fl€ ( 0 ) for K 

:s 21r /a. If the maximum wave number Kmax 
= p (ne + 1 ), which enters in (43), satisfies the 
condition Kmax :s 27r I a, i.e., if the inequality 
pa < 27r /( ne + 1) is satisfied, then we can replace 
the function <fiE ( K) in (42) and (43) by q,€ ( 0), 
which by definition and by formula (22) is equal to 

<fiE ( 0) = ifaV81r3 . In this case the scattering 
indicatrix is spherical; for the total diameter we 
have 

In the single scattering approximation the cross 
section {3 = as /2V for backward scattering from a 
unit of scattering volume is equal to the attenuation 
coefficient of the wave due to scattering by a fluc­
tuation. This quantity 

~ = p4a~a2/8rt 

is ne times larger than the attenuation coefficient 
given by the second term of formula (37a). Thus, 
account of the multiple scattering leads to a de­
crease in the attenuation coefficient. 

In conclusion let us ascertain under what condi­
tions the first term of the series cp = 'Pi+ cp2 + · · · 
can be used. Inasmuch as 'Pi *cp2 = 0, let us esti­
mate 'P2*'P2· By a method analogous to that used 
above to estimate the corrections of Mif, we can 
show that 

(45) 

where ageom is the geometric cross section 
diameter of the scattering volume. This leads to 
the condition pL « (ka0 )-3a-2, where L is the 
linear dimension of the scattering volume. For 
sufficiently small L we can always use formula 
(43). 

6. CONCLUSION 

For a wave propagating in a medium with strong 
small-scale fluctuations of the refractive index, 
formulas can be obtained for the real and imaginary 
parts of the propagation constant of the transmitted 
wave and for the intensity of the scattered field 
[see formula (36), (37a), and (44) ]. These quanti­
ties are expressed in terms of the correlation 
functions of the fluctuations . 

The amplitude-phase relations for the trans­
mitted waves, and also for the intensity of the 
scattered field, can be measured, so that both the 
parameters of the correlation wave and the propa­
gation velocity in the homogeneous medium can be 
determined. 
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