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The nonlinear theory of oscillations excited by the interaction of a monoenergetic beam with 
a plasma has been investigated. The oscillation amplitude at saturation and the growth of the 
thermal energy of the beam and plasma resulting from the interaction are determined. 

l. It is well known that under certain conditions collisions in the plasma and beam can be neglected 
the interaction of a plasma and a beam of charged (it is assumed that the relaxation time of the col-
particles can lead to instabilities. The amplitude lective interaction is small compared to the mean 
of the oscillations associated with this instability time between collisions). 
has been investigated in the linear approximation The instability resulting from the interaction 
by Akhiezer and Fa1nberg[1] and Bohm and Gross.C2J of a plasma and a monoenergetic beam can be de­
This approximation holds only at the beginning of scribed as follows. The feedback effect of the os­
the process and, for this reason, cannot be used to cillations retards the beam but increases its tern­
determine the ultimate amplitude of the oscillations perature. In the initial stage of the process (low 
or the ultimate state of the beam-plasma system. oscillation amplitude) the beam remains cold and 

A number of recent papers have been concerned the hydrodynamic description given in Sec. 2 ap-
with the changes in the distribution function and plies. The change in beam parameters during this 
various mean quantities (mean velocity and tern- stage does not lead to any important change in the 
perature) resulting from the "feedback" effect dispersion relation and the oscillation amplitudes 
of the oscillations. [3- 7] If the distribution function grow exponentially with time, as in the usual linear 
is "smeared out" VT1 » Yk/k (vT1 is the thermal theory. Later on, however, changes in oscillation 
velocity of the beam, Yk is the growth rate of the amplitude cause changes in the beam parameters 
k-th unstable mode, I v- Vph I "' Yk /k is the veloc- so that the nonlinear interaction between modes 
ity range in which the beam particles exchange en- results in saturation over a rather narrow range 
ergy with this mode), the distortion of the distribu- of wave phase velocities I v ph- u0 I ~ ( N 1 /N2 ) 113u0; 

tion function resulting from feedback leads to even- at this point the total oscillations energy is of order 
tual saturation at rather low amplitudes, in which (N1 /N2 ) 113N1mu5 (u0 is the initial beam velocity, 
case the nonlinear interaction between modes is N1 and N2 are the beam and plasma densities). 
unimportant. This circumstance yields the possi- This stage of the process is treated in Sec. 3. 
bility of formulating a quasilinear theory for the The change in mean beam velocity causes a 
instabilities arising in this case. [s, 7] broadening of the spectrum and an increase in 

In the present paper we investigate the interac- total oscillation energy. It is important that for 
tion between a plasma and an initially monoener- a low-density beam the criterion for applicability 
getic low-density beam in the nonlinear approxi- of the quasilinear approximation VT1 » Yk/k is 
mation. For this case the inequality VT 1 « Yk /k satisfied for values of the oscillation energy small 
is satisfied at the initial stage of the process for compared with the energy of the directed beam mo-
the most unstable part of the spectrum so that all tion. The quasilinear stage of the beam-plasma 
the beam particles exchange energy with each mode. interaction is treated in Sec. 4. The beam particle 
The assumption of a small beam density made in velocities diffuse to values of the order of the ther-
the present work is most important as it allows us mal velocity of the plasma and a plateau appears 
to follow the development of the instability to its in the distribution function. In the process the 
conclusion. We also assume that the initial state beam loses an appreciable part of its energy of 
of the beam-plasma system is uniform, that the directed motion (up to 75%); this energy is con-
oscillations are one-dimensional, and that binary verted into energy associated with the oscillations 
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and the thermal energy of the beam and plasma 
particles. 

2. In analyzing the change of the original state 
of the beam and plasma resulting from the feed­
back effect of the oscillations it is convenient to 
write the distribution function as a sum of two 
parts f = f0 + f1o where f1 (t, x, v) is the oscillating 
function in time and space that describes the os­
cillations and f0(t, v) is the "background" on 
which the oscillations develop. The equation that 
describes the change in f0 resulting from the os­
cillations can be obtained from a kinetic equation 
in the Vlasov form by averaging over distances 
large compared with the oscillation wavelength: 

fo = (f) (1) 

(the brackets denote averages and E is the elec­
tric field associated with the oscillations). In the 
initial stage, in which the beam is still monoener­
getic, we need not determine the time behavior of 
the distribution function itself f0, but rather the 
time behavior of the mean velocity and tempera­
ture, i.e., the first and second moments of the 
distribution function. (It is these quantities that 
appear in the dispersion equation and in the cri­
teria that define the monoenergetic properties of 
the beam). 

To compute the mean velocity and temperature 
of the a-component (i.e., the beam or plasma) 
we make use of the following equations which are 
obtained from the original equation (1): 

, 3eNa.Ta• duo: (3) 
D £a11 = - -----;:;;,z- E k - 3 "dr £211· 

Here we use the notation :6 = d/dt + i ( kua - wk_). 
If the following condition is satisfied:1> 

f Mua.l(kuil - wk) I< 1 (4) 

(where oua = ua- u0a is the change in mean ve­
locity resulting from the feedback effect) the so­
lution of (3) is 

k~lCJ. 
£o11 =- ku -w ' 

Oa. k 
(5) 

where wk = wk_ + iyk, Yk is the growth rate for the 
k-th mode, dEk/dt = YkEk, wk_ =- wk_ for the un­
stable modes, for which Y-k = Yk > 0. 

Substituting ~oa from (5) in the Poisson equa­
tion ikEk = - 47T'e 6 ~oa we obtain the dispersion 

a 
equation for wk in the linear theory 

( w~ = 411e2Na, 
m Uo2 = 0 ). 

The solution of this equation has been obtained in 
[l] . The maximum growth rate occurs for ku0 

· h' h - ~3 2-413w213w1/ 3• the = w2, 1n w 1c case Ymax - v ,j 1 2 , 

corresponding "detuning" ku0 - wk = 2-413wi13w~13 , 

that is to say, ku0 - w~"' Yk in the instability aris­
ing from the interaction between a plasma and a 
monoenergetic beam. This is to be contrasted with 

!!:_ (mN a.Ua.) = I mu aat o"- du = (Epa.), the "weak" instability that occurs in the interac-
dt J t b . 

tion between a plasma and a smeared out eam, m 
!!:_ (Na.Ta.) =I~ (u _ u )2 atoa du = -e/E \' f1 a. (u- ua) du"'-/ which case I w- ku0 I "' kvT1 » y. The width of the 
dt 2 j 2 a at "'-.. j . 

most unstable part of the spectrum (for whwh 
= (EJa.)- u"- (Epa.); (2) y,... Ymax> is ~k = (wdu0 )(NtfN2 ) 1/ 3• Thus, in 

where p a and J a are the perturbation in charge 
and current density caused by the oscillations. 

We assume that the oscillations are linear and 
determine Pa and Ja from the linearized equa­
tions for fw. Writing E and fw in the form 

E = {{~Ek (t) exp [i (kx- w~ t)l + c.c.}, 
k 

f1a. = { {~ ha. (t, u) exp [i (kx- w~t)J+c.c.}, 
k 

we find that the moments ~na = J fka ( v - ua )n are 
given by the equations ( cf. [4]): 

D£0 a. = - ik£1a., 
, eNa. • dua. 
D£1 o. = --Ek -1k£2a.--dt £oa.• rn 

, . duo. 
Dsza. = - tksall -2& £1"' 

the linear stage those modes are excited whose 
phase velocities are close to the initial beam ve­
locity Vph R:J u0; these lie in the range ~Vph = 
(avph/ak)~k- u0(Nt/N2 ) 113• 

Substituting (5) in (2) we obtain the following 
equations for the mean velocity and temperature 
of the beam: 

1lin (3) we have formed a chain of equations (havirig set 
~. = 0) that corresponds to neglecting terms of higher order 
in lkou/(ku0 - w)l and lk2 T/[m(ku0 - w)'] I compared with 
those that appear in (3). 

(6) 
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Thus, in the initial stage the temperature and 
retardation of the beam grow exponentially to­
gether with the amplitude (I Ek 12 ~ e2Ykt ). In (6) 
we replace the factor multiplying the exponential 
by the value corresponding to the most unstable 
mode (ku0 = w2 ); then integrating (6) with respect 
to t we have 

NlmuofJU 1 ~- -- -1-n ~I Ek [2 , ,, 
[ it is assumed that T 1 ( t = 0 ) = 0 ]. 

In similar fashion we obtain the following equa­
tions for the mean velocity and temperature of the 
plasma: 

Thus 

Nl'IT2 - L "'IE 12 
2 - Rn L.: k 1 

k 

The increased temperatures of the beam and 
plasma can be explained as follows. At the initial 
time the electrons are uniformly distributed with 
respect to phases of modes resulting from fluctua­
tions and the magnitudes of the fields acting on the 
electrons are different. The phase spread means 
that the energy obtained by the electrons from the 
modes is different for different particles; a tem­
perature increase is obtained when averages are 
taken over phase. In the linear approximation 
J a = p au a -eN a V a ( V a is the velocity with which 
the particles oscillate) and we have from (2) 

that is to say, the increment in the thermal en­
ergy of the beam and plasma derives from the 
kinetic energy of the oscillations. 

The energy lost by the beam in the initial stage 
is distributed equally between the potential energy 
of the oscillations and the thermal energy of motion 
in the plasma. A small part of the energy lost by 
the beam (~(NtfN2 ) 1 /3 ) goes into increasing the 
thermal energy of the beam. However, since N1 
« N2 the beam temperature remains high com­
pared with the plasma temperature. 

We note that (8) describes the plasma up to the 
very end of the process, where ~I Ek 12 ~ N1mu5; 

k 
on the other hand it is easy to show, by substituting 
u2 and oT2 in (4), that the analogous relations for 

the beam (7) apply only for amplitudes ~I Ek 12 
k 

~ (NtfN2 ) 1 13jN1mu~ small compared with the beam 
energy [beyond these amplitudes ou1 ~ uo(NtfN2 )113 
and k2T 1 /my2 ~ 1 and the beam conditions specified 
in (4) are violated]. It will be shown below that the 
nonlinear interaction between modes becomes im­
portant at these amplitudes. 

3. To analyze the nonlinear interaction between 
modes we use the following system of equations: 

e , at q [ • ( , r ') t I - - ~ Ek-q -a exp - t wk-q + wq - wk , m ..(....J v 
q 

ikEk = - 4n:e ~ {kdv. (9) 

(The primes over the summation signs mean that 
we omit terms characterized by q = 0, which are 
included in f0; f0 is the distribution function for 
the beam and plasma which changes because of the 
oscillations). In the linear approximation the solu­
tion of (9) is 

(l) e Ekafojav (10) 
fk = ---,;:,: i (kv- wk) · 

Taking account of second -order terms in the oscil­
lation amplitude in (9) results in the appearance of 
frequencies Wk ~ 2w2 and Wk ~ 0 in the spectrum. 
The next (third) approximation leads to nonlinear 
terms with frequencies Wk ~ w2. Taking account 
of these terms leads to a change in the time de­
pendence of the oscillation amplitude Ek as com­
pared with the linear theory. Some rather compli­
cated calculations yield the following equation for 
Ek ( t) in this approximation: 

dEk = nEk + i "' H (k, q, x) Ek-qEq-xEx 
dt Li 

q, X 

X exp [- i (wk-q + w~-x + w~- w/,) t]; 

4ne4 wJ; - wk-q - Wq-x - wx 

H (k, q, x) = ----sk ( , w + c·' · k) 
In £ Wk-q I q-x ux• 

{ \ dv a [ :1 a 
>~ \ (fJ -1- (fJ • + (I) - kv av (fJ -· -:· (fJ - qv av 

ot' &-q Q-X X Q X X 

. 1 a to\ \ dv a 
X I (fJ -XV av I \ (JJ, + (fJ +(I) - kv av 

\ X 1 t- !l-q Q-Y.. X 

(11) 
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where E( Wk, k) is the longitudinal dielectric con­
stant. Because the beam velocity is approximately 
the same as the phase velocity of the unstable 
waves lvph-uol ~ u0(Nt/N2 )1/ 3, when a plasma 
interacts with a low-density monoenergetic beam 
the nonlinearity appears in the beam much earlier 
than in the plasma. Hence, the plasma can be 
analyzed in the linear approximation. Keeping 
only the largest terms associated with the beam 
in (11) we have 

(12) 

In (12) we include terms characterized by q = 0 
in the summation; these terms correspond to the 
change in growth rate resulting from the change in 
beam parameters. In the present case these terms 
are of the same order as the q ~ 0 terms, which 
correspond to the change in growth rate associated 
with the nonlinearity of the oscillations. Then y~> 
is the growth rate in the linear stage; y~> ~ Ymax 
= {3 2-413w2(NtfN2 ) 113 over a rather narrow range 
of phase velocities 

I Vph- Uo I ;(; Uo (N / N 2)'/a. 

Using (12) we consider the saturation of the oscil­
lations in this portion of the spectrum k = ko + nok; 
k0 = w2 /u0 is the most unstable mode in the spec­
trum and ok is the spacing between two neighbor­
ing modes, where I nok I « k0• 

Equation (12) is extremely complicated. Since 
we shall be only interested in an order-of-magni­
tude estimate of the saturation amplitude for this 
stage, in (12) we replace the kernel by its value 
for the most unstable mode. In place of (12) we 
then obtain a simple equation for the amplitudes 
En: 

dE,_. E -~~(! "4V3)~ * 
dt- Ymax n 16 y3 N mu2 - l L..J En,+n,-nEn,En,• 

1 0 n,n .. 
. (13) 

We now introduce the dimensionless amplitudes 
an= En[(Nt/N2 ) 1/ 3 x N1mu5J-112 in (12) and carry 
out a Fourier transformation a(~) = I:anein~ [in 
this case the summation in (12) disappears], there-

by obtaining the following equation for ( t, ~ ) : 

Thus, 

3a/3t == Ymax (a-aa2a*), 

a= -T-2'1'(1-4}/3i) =a'+ ia". 

a 
at I a 12 = Ymax<la 12 - a' I a 14 ). 

(14) 

A similar equation has been used earlier by 
Landau and Lifshitz for determination of the am­
plitudes of turbulent motion in hydrodynamics. [SJ 

Solving this equation we have 

For small values of t the amplitudes grow ex­
ponentially with time; when t satisfies the condi­
tion 

: ao 12 e~·r 111 '" 1 ~ L] En i 2;N1mu~ (Nl;IV~)'' ~I' 
I! 

the nonlinear mode interaction retards the expo­
nential growth and saturates the amplitudes. 

In computing I: I En 12 we assume that a strong 
longitudinal magnetic field is applied to the system, 
in which case the mode spectrum becomes one­
dimensional. Assuming that the initial oscillations 
in the plasma are due to fluctuations IE~ I2/87T 
~ T~0 > and using the results obtained earlier in [4J, 
we obtain the following expression for I: I En 12 in 
the linear stage: 

~I E 12 = 0 02 w: T(O/ ('!3)';, { y3 ( N1)'j, } -'j, 
L..J " ' :rt u3 2 N1 exp 2';, N" or 't' ' 
n 0 

(15) 

It is assumed that T » (NdN1 )113• Then the time 
required for the onset of saturation is given by 

~~i_(N2)'/3 [N1u~mu~] fsat~ ,;- N In 3 (O) • r 3 W2 1 w2 T 2 

The saturation amplitude, obtained from the re­
lation 

is given by the following expression when t -- oo : 

(16) 
n 

It must be pointed out that (14) has been obtained 
by perturbation theory and, strictly speaking, ap­
plies only when I a 12 « 1. When I a 12 ~ 1 the equa­
tion for lal 2 isoftheform dlal 2/dt=f(lal 2 ); in 
(14) we have retained only the first two terms in 
the expansion of f(l a 12 ) in I a2 1. If this expansion 
converges the roots of the equation f( I a 12 ) = 0, 
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which determine the saturation amplitude, are of 
the same order of magnitude as the roots of 
dl a 12/dt = 0 as determined from (14). 2> This ap­
proximation is fully adequate in the present case 
because, as will be shown below, the contribution 
of the portion of the spectrum given here repre­
sents a small part of the total energy of the oscil­
lations ["' (NtfN2 )113]. 

Thus, the analysis of the nonlinearity carried 
out in this section can be used to trace the satura­
tion of the modes produced ·in the linear stage, for 
which I Vph -u0 I~ (NtfN2)113uo. The total energy 
of these modes is given by (16). Inasmuch as the 
excitation of the modes is due to the energy of the 
directed motion of the beam, when 

~I Ek 12 ~ N1mu~ (N/N 2)'f, 
k 

we have 
6u ~ u0 (N/Nz)'!, ~ ~Vph 

The change in mean velocity of the beam by an 
amount of the order of the width of the excited mode 
spectrum .6.Vph means that neighboring portions of 
the spectrum are excited, causing an increase in 
the total energy of the oscillations and the thermal 
energy in the beam. When ~I Ek 12 "' N1mu~ 
x (NtfN2)113, it follows from (7) that kvT1hk"' 1. 

As the energy associated with the oscillations 
becomes still greater the distribution function of 
the beam becomes smeared out to such an extent 
( kvT 1 hk » 1) that the quasilinear approximation 
applies. In the quasilinear approximation we take 
account of the distortion of the distribution function 
due to the feedback effect of the oscillations, but do 
not take account of the nonlinear interaction be­
tween modes. 

4. To derive the equations that describe the 
change in f0 resulting from the feedback effect of 
the oscillations we start with (1). In (1) we expand 
f1 and E in plane waves and use the linear theory 
(10) to relate the amplitudes of fk and Ek; taking 
averages and going to the limit y - 0 ( y « w) 
we obtain 

ato- 2ne2 ~IE 12~(" (k - ')~) at - m2 LJ k au u v (J) k au . 
i<>O 

(17) 

In the quasilinear theory we neglect the interaction 
between modes so that the equation describing the 
time variation of the energy in the k-th mode is 
of the form 

2)Similarly, the relations in (7) apply, strictly speaking, only 
when liEkl 2 « N 1mu~ (N,/N,)"', but give the proper order of 
magnittde when extrapolated to the region ll Ek 12 - N 1 mu~ 

" k X (N,IN,) '· 

where Yk is the growth rate in the quasilinear 
stage. The frequency wk is given by 

wJ; = W2 (1 +fk2Ab) = W2, 

(18) 

where A.n = v' Td47TN2e2 is the Debye radius in 
the plasma. The initial distribution function in the 
quasilinear stage is taken to be the function f~0 >(v) 
arising in the preceding stage. This function is 
shown in Fig. 1 by the dashed lines. At the begin­
ning of the quasilinear stage the mean velocity of 
the beam uf0> R: u0 and the thermal velocity v~> 
"'u0(NtfN2 )113• The exact form of the distribu~ 
tion function f~O> is unimportant in what follows 
since this function is used only to determine the 
amplitude of the oscillations over a narrow portion 
of the spectrum I Vph- u0 I "' uo(NtfN2 )113 whose 
contribution in the total oscillation energy is ap­
proximately (NtfN2 )1/3. 

,'\fo(O,v) 
,/ I 
I I 
I I 
I I 
I I 

'':--..:£../.::.;o (~""-'....:v) _ _,,~,\ 

' ' ,_ I 
/ 

v 

FIG. 1. Change in the distribution function resulting from 
the development of an instability. The dashed lines show the 
distribution function at the beginning of the quasilinear stage. 
The peak at v "' u0 corresponds to the beam. The solid curve 
is the distribution function that is established at the end of 
process. 

The derivative 8f~0 > /8vph > 0 for velocities in 
the range I Vph- u0 I ~ u0(Nt/N2 )113 ; modes with 
phase velocities in this range are excited in the 
beginning of the quasilinear stage and 

r N1 u~h ( N1)';, y<o>~wk- -- ~w2 -
N 2 (!l.vph)2 ,N. 

is of the same order of magnitude as the growth 
rate for a monoenergetic beam interacting with a 
plasma. The diffusion of beam particles in veloc­
ity space caused by the oscillations causes the 
width of the spectrum to grow. The stable state 
is one for which v > 0 and 8f0 /8v ~ 0. Hence, as 
a result of the feedback effect of the oscillations 
the particles in the beam diffuse to a velocity of 
the order of the thermal velocity of the plasma 
and a plateau develops in the distribution function 
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(the distribution function established at the end of 
the process f0( oo, v) is also shown in Fig. 1). If 
the thermal velocity of the plasma is small com­
pared with the directed velocity of the beam the 
beam velocity is changed considerably ou "' u0 

as a result of diffusion and the energy of the os­
cillations excited in the quasilinear stage will be 
of the same order as the initial energy of the 
beam. 3> 

Carrying out the integration over k in (17) we 
have 

(19) 

Substituting in (19) the quantity I Ek 12 ofo /ov from 
(18) a,nd integrating over v and t we obtain the 
following relation, which gives the mode spectrum 
in terms of the change in the distribution function 
(this integral of (17) and (18) has been obtained 
earlier in [5] and [7]: 

v 

]Ek 12 - J £~ ]2 = ~:: v3w2 ~ dv (f0 (t, v) - f~ol (v)). (20) 
v, 

The quantity IE~ 12 is the mode spectrum at the 
beginning of the quasilinear stage that has been 
considered in Sec. 3. 

The height of the plateau in the distribution 
function foe' is determined from the conservation 
of the number of particles: 

(21) 
v, 

where vi and v2 are the lower and upper spectrum 
limits. When t- oo the quantities vi and v2 are 
obtained from the equations 4> 

pl N 2 ( mv~) To= fo (vt) = (2nT.;m)'f, exp - 2T, ' 

It follows from (21) and (22) that 

f~ = fg (v2)· 
(22) 

V T2J {N2 Uo } vt~ - n --------.-;-
~ 2m Nt (2nT2fm)'f, · 

The quantity f0 ( oo , v ) R: N d ( u0 - v d for vi < v 
< v2; f0(v) does not change greatly outside this 
range. In order to determine the steady-state 
spectrum we must go to the limit t- oo in (18). 

3lThe author's attention has been directed to this feature 
by A. A. Vedenov and E. P. Velikhov. 

4lit is assumed that the plasma distribution function is not 
changed greatly in the interaction with the beam. For this 
condition to be satisfied we require that N2 T2 » N1mu~. The 
latter condition, however, is not necessary since the change 
in the form of the distribution function fJ' 1(v) does not change 
the results greatly as long as v, - vT, « u0 • 

Then, substituting f0 ( oo, v) in {20) and noting that 
I v- u0 I ~ u0(NtfN2 )i/3 everywhere outside of a 
small portion of the spectrum we can neglect f8 
compared with f0 and IE~ 12 compared with 
I Ek' 12 thereby obtaining the following relation 
for the amplitudes of the steady-state spectrum: 

I Eoo J2 = 4rr,2 N m w; w./k- v, 
k l k3 Uo- Vt ' 

{23) 

The amplitudes and the range of phase veloci­
ties I v- u0 I ~ u0(NtfN2 )i/3 are characterized by 
the following inequality: 

I Eoo 12 <I Eo J2 + 4rr.2N m w~ w./k- v, 
k k 1 k3 Uo - v, . (24) 

By means of this inequality it can be shown easily 
that the contribution of this portion of the spectrum 
in the total oscillation energy is approximately 
( N tfN2 ) i/3, which is negligibly small. The mode 
spectrum arising in the interaction of a beam with 
a plasma is shown in Fig. 2. The dotted portion 
shows that part of the spectrum in which an impor­
tant role is played by the nonlinear interaction of 
the modes and whose amplitudes have been deter­
mined to within an order of magnitude. 

FIG. 2. 1Spectral density of 
oscillation energy· arising in 
the interaction of a beam with 
a plasma. 

1 
I 

I 
I 
I 
I 
I 
I 

' I 

' ' 

,-

The potential energy of the oscillations is given 
by the integral 

(25) 

{The factor 2 in the numerator arises because we 
must take account of the two regions k > 0 and 
k < 0 in the integration over k). Using (8) we ob­
tain the change in the energy of the thermal and 
directed motion in the plasma: 

~N2mu~ = WN/3N 2• (26) 

The mean velocity in the beam as t - oo is 

00 

1 \' f ( ) d Uo + Vt U00 =N,.) 0 oo, V V V = - 2-. 
v, 
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Thus, the thermal energy of the beam as t-oo is linear stage we have t:.v"' u0, 61 Ek 12 ,.... N1muij 
k 

and f3 "' NtfN2 « 1. 
Now, using (11) we estimate the time required 

for the nonlinear mode interaction to become im­
(27) portant, causing the decay of the stationary spec­

trum (23). The summation in (11) contains terms 

while the loss of energy associated with the directed 
motion by the beam is 

be= !:...N 1 mu~-!:...N1 mu;, 2 2 

=} N 1m (u 0 - v1) (u 0 +v/3) = ~ N1mu~. 

It is evident that the energy of directed motion lost 
by the beam is equal to the energy that goes into 
oscillations and into increasing the beam and 
plasma temperatures. 

The order-of-magnitude of the time required to 
establish the stationary spectrum (23) is 

1 I W (l) ~ N 1 v2 N 1 • 
tR~ 7 n W'o' y ~ffi•fli";(tw)• ~ffi•~' 

where y 0 > is the growth rate for the highly 
smeared beam distribution function, W"' N1muij 
is the final energy of the oscillations, and W 0 

"' TdA.b is the initial energy of the oscillations 
(the thermal noise energy in the plasma). 

5. In order for the approximation used in this 
work to apply the nonlinear mode interaction must 
be negligibly small in the relaxation of the beam 
to the final quasilinear stage. 5 > The second term 
in (11) describes the change in amplitude due to 
mode interactions. We note, first, that in the 
quasilinear stage the nonlinearity in the beam is 
much weaker than in the earlier stages since the 
particle distribution function has been smeared 
out. In (11) we now separate the nonlinear terms 
associated with oscillations of beam particles and 
calculate the ratio of these terms to the main terms 
in (11) YkEk; this ratio is of order 

~ = ~1Ek/2/N.mu~(~vju0 )4 , 
k 

where t:.v is the width of the spectrum, i.e., the 
width of the distribution function. In the quasi-

5>Particle trapping is also neglected in the quasilinear 
approximation. In the case treated here, a wave packet with a 
random distribution of phases, we require that the width of the 
packet ~v be somewhat greater than the velocity with which 
a captured particle would move in the potential well ecp0 : 

~v » V /ecp0 jm;[•] cp0 is the potential, •<p0 - V<cp2> ~ ~!Ekl 2/k2)"2. 
Substituting 1Ekl 2 from (23) we have k 

in phase with the linear term YkEk. These terms 
correspond to K = k and K = q- k. These "coher­
ent'' terms only change the dispersion relation, 
i.e., they change the frequency and growth rate 
because of the nonlinearity; the contribution of 
these terms is treated separately. 

From (11) we then have 

dcoh , 
--cit I£" [2 = / Ek !2 ~ I Eq 12 Im {H (k, k + q, I?) 

q 

+H(k,k +q,q)}. (28) 

When kA.0 « 1, the largest contribution to 
Im {H(k, k+q, k) + H(k, k+q, q)} comes from 
terms for which Wk ~ - Wq· Taking this feature 
into account, after some simple calculations we 
obtain 

I H k 4ne4 1 
m{ ( ,k +q,k) +H(k,k +q,q)} =-a a ( k)!iJ m e wk, wk 

X I {(' (k + q) (iJfo!iJv) dv 
m J (wk- kv)3 (wq- qv) (wk+ wq -(k+q) v) 

I 2k (iJf0/iJv) dv 4ne2 

+ .l (wk- kv)4 (wq- qv) +me (wk + wq, k + q) 

[ I (iJfo/iJv) dv J 2} 
X ,l (wk-kv) (wq-qv) (wk + wq- (k + q) v) 

9e2 w2 k•q• =- ----1m------
2m2 w~ w~ (k + q)2 e (wk + wq; k + q) 

Here, 

= 1 - ni 4:rte2 1 k + q I iJfo I 
(k + q)2/.,~ m (k + q)3 av v=(<»k+<»q)/(k+q) 

= 1 [1+~--fni(k-)!k+q!~.,D]· (k+q)2J.,~ 2 v 2 q k+q 

(ffik +ffiq =~(k2- q2) t.,~). 
2 

(29) 

Thus, finally we have 

lm{H(k,k +q,k) +H(k,k +q,q)} 

~ 27 e• k 2 2 (k )---'-!_k --'--+---'-q--'--1 ~--- q -q 
4 m2w~ k + q 

Substituting the steady-state amplitude from (23) 
in (28) we obtain the following approximate rela­
tion: 
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coh 
ddt I Ek 12 ~ k3 '-}) r11> I Ek [2 < rk1> I Ek [2 , (30) 

since k3i\.h ~ (vT2/u0 )3 « 1. 
To determine the change of amplitude due to 

the incoherent terms we make use of a method 
similar to that used in quantum mechanical per­
turbation theory: [TJ 

incoh 

----;{(I Ek 12 = I Ek [2 ~ (I Eq [4 ;;e (k,q) 
q 

:1t (k, q) = H (k, k + q, k) + H (k, k + q, q) 

+H(ll,fl-q,fl) +H(k,k-q,-q) +H(k,O,q) 

+H (k, 0,- q) ~e2 k4 1,b/tn2(J)~. (31) 

Substituting I Eq 12 from (23) in (28) we have 
dincoh N 
~ I Ek [2 ~!IT; k2Ah)/) I Ek 12 < y),l) IE,, 12 , (32) 

that is to say, the time required for the coherent 
and incoherent interactions of modes given by (23) 
to become important is several orders of magni­
tude greater than the growth time for the oscilla­
tions; hence, the nonlinear mode interaction can 
be neglected in the analysis of the establishment 
of the mode spectrum. 

Thus, in the absence of binary collisions the in­
teraction of a monoenergetic low-density beam with 
a plasma causes the beam to lose a large part of 
its energy of directed motion; this is approximately 
%N1mu3. One part of this energy goes into the en­
ergy of the electric field % N1mu3 while the other 
goes into increasing the thermal energy of the 
beam Y24 N1mu3 and the plasma % N1mu3. The en­
ergy of directed motion lost by the plasma in the 
interaction with the beam is small: N2mu~ 
~ (NtfN2 )N1mu3. 

6. Experimental investigations of the distribu­
tion function of a beam of electrons interacting 
with a plasma have been carried out by Karchenko, 
_Fa!nberg et al [SJ. In the experiments reported by 
these workers waves were amplified in propagating 
along the beam and measurements were made of 
the distribution function, averaged over a time in­
terval large compared with the oscillation period. 
For a small interaction length, in which case the 
instability cannot develop and the beam loses a 
small (approximately 1%) part of its energy, the 
distribution function is smeared out slightly re­
maining bell-shaped. On the other hand, the dis­
tribution function exhibits a plateau when the in­
teraction length is large. 

In the experiments reported by Karchenko et 
al [9] the beam energy in the region of instability 
was characterized by values ranging from 2500 
to 3500 eV, i.e., the beam distribution function 
was characterized by the parameters u0 ~ 3 x 109 

em/sec, VT/Uo ~ 0.1. The energy distribution 
of the beam particles was smeared out strongly 
in the region of the instability whereas the veloc­
ity distribution function for the beam particles 
remained constant in the velocity range from 
1.2 x 109 em/sec to 3.2 x 109 em/sec, corre­
sponding to energies from 500 to 3500 eV (lower 
energies were not investigated). Consequently, 
the beam lost at least 50% of the energy of di­
rected motion, which was converted into oscilla­
tions and thermal energy. These experimental 
data are in good agreement with the results of 
the present work. A more detailed comparison 
of theory and experiment would be difficult since 
there are no experimental data concerning the 
spectra of longitudinal oscillations excited by the 
beam (the dependence of the oscillation amplitude 
on phase velocity) nor precise measurements of 
plasma temperature. 

In conclusion the author wishes to thank Ya. B. 
Fa!nberg for proposing this subject and for guid­
ance, A. I. Akhiezer for discussion of the results, 
A. A. Vedenov and E. P. Velikhov for valuable 
comments, and V. I. Shevchenko for assistance. 
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