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A kinetic equation has been derived for wave interaction in a weakly nonequilibrium low-density 
plasma. The relation between the laminar and turbulence theories of collisionless shock waves 
in a strong magnetic field is discussed. The kinetic equation is used to estimate the turbulent 
width of shock waves. 

1. INTRODUCTION 

IT is well known that collective oscillations can be 
excited in a low-density plasma which is near equi
librium and that these oscillations can have an im
portant effect on relaxation phenomena in the plasma 
The initial stage in the development of these oscil
lations can be treated as an instability growing from 
the stationary state, in which case the appropriate 
growth rates are determined from the linear theory 
of stability. [t] 

Obviously the waves arising as a result of the 
instability cannot continue to grow indefinitely. The 
ultimate state is determined by nonlinear effects 
deriving from the interaction between oscillation 
modes. It is important, in this regard, to note that 
the dispersion properties of different modes can be 
determined completely by the linearized equations 
of motion while the nonlinear effects can be de
scribed in terms of a weak (for low amplitudes) 
interaction between modes. For this reason one 
can think of the system as a weakly nonideal gas of 
modes similar to the phonon gas in the quantum 
theory of solids. [2] As in the theory of phonons, it 
may be assumed that a weak interaction between 
different modes (for a large number of modes) 
leads to a rapid randomization of the phases of the 
individual modes and to a slow change in mode am
plitude ( cf. for example, [ 3]) so that a kinetic equa-

tion can be written for the modes. 
In the present work we present a general me

thod for the derivation of this kinetic equation from 
the hydrodynamic plasma equations under the as
sumption that the lowest-order elementary process 
is the interaction of three modes. In principle, this 
method can be applied with different assumptions 
as to the equations of motion of the plasma. 

As a concrete example (in connection with cer
tain applications to the theory of shock waves in a 
low-density plasma in a strong magnetic field) the 
basic equations of motion are taken to be the mag
netohydrodynamic equations for a low-density gas 
in a strong magnetic field ( H2 /Srr :::?> p) in which 
account is taken of dispersion effects that arise at 
frequencies comparable with or greater than the 
ion Larmor frequency wH = eH/mic. 

These equations are ( cf. for example, [ 4 ,5]) 

av;at + (VV) V = (4npf1 [rotH, HJ, 

aH;at =rot [VHJ- (m,.c/4ne) rot p-1 [rotH, HJ, 

apjat + div (pV) = 0, div H = 0. 

(1.1)* 

(1.2) 

(1.3) 

The equations in (1.1) -(1.3) differ from the usual 
magnetodydrodynamic equations in the appearance 
in (1.2) of a term that becomes small when w « wH. 
This term describes the characteristic dispersion 
effects at w ~ WH so that the system (1.1)-(1.3) 
can be called the "magnetohydrodynamic equations 
with ion dispersion." 

The kinetic equation obtained in Sec. 2 of the 
present work is found to have the same structure 
as the kinetic equation proposed on the basis of 
phenomenological cons ide rations by Camac et al, [sJ 
which, however, contains no explicit matrix ele
ments or a method for obtaining them. 

In Sees. 4 and 5 we consider certain applications 
of the kinetic equation for interacting modes in the 
structure of the shock front in a low-density plasma 
in a strong magnetic field. Sagdeev [ 7J has shown 
that within the framework of the laminar theory a 
shock front in a low-density plasma propagating 
perpendicularly or nearly perpendicularly to the 

*rot= curl, [vH] = v x H, (VV) = (V·\7). 
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magnetic field exhibits an oscillatory structure. 1 l 

This result has been extended in [ 9] to the case of 
an arbitrary angle between the shock front and the 
magnetic field. The question arises as to the sta
bility of this oscillatory structure with respect to 
decay into two waves the sum of frequencies and 
wave vectors of which are equal respectively to the 
frequency and wave vector of the original wave 
(these "decay" instabilities of periodic waves have 
been described earlier) _[to] 

The matrix elements appearing in the kinetic 
equation are found to be closely connected with the 
growth rates for the decay instability mentioned 
above; thus it is possible to evaluate easily the 
instability of the oscillatory structure against de
cay into two waves (cf. alsoC 5J) and to obtain the 
corresponding growth rates. 

Using the kinetic equation for interacting modes 
we examine the nature of the turbulence arising 
from decay and make estimates of the width of the 
shock wave. 

We note, finally, that the general properties of 
the matrix elements allow us to set important 
limitations on the classes of waves that can exhibit 
instability against decay. The appropriate results 
are given in Sec. 3. 

2. KINETIC EQUATION FOR MODES 

The system of equations in (1.1)-(1.3) can be 
written in the following form for small deviations 
from the equilibrium values: 

iiJcp/at + H0cp + H1 {cp, cp} = 0, (2.1) 

where cp is the state vector, represented in the 
form of a column consisting of the components of 
the velocity v, the perturbation of the magnetic 
field h, and the density Ap; H0 is a linear operator 
with real eigenvalues; H1 is a bilinear differential 
operator. The operator H0 can be written 1in the 
form of a matrix whose elements are differential 
operators while H1 { cp, cp} can be written in the 
form of a column vector. 

For low-amplitude waves we neglect the non
linear term and obtain the equation 

i()cp!iJt + H~ = 0. (2.2) 

This equation has characteristic solutions of the 
form 'Pk ( r, t) = cpke- i< Wkt-k·r > where the fre
quency wk is ..real by virtue of the properties of 
the operator H0• The vector cp can be expanded in 
eigenvectors of the operator H0: 

1lThe laminar theory of shock waves in a collisionless 
plasma has also been treated by a number of other authors.[a] 

cp = ~ (CLo>cpke-i<wkt-kr> + cLo2cpk_i<wkt-kr>); 
k 

C(O) c(O)* m * 
k_ = k • Tk_ = Cf!k, (2.3) 

where c<~ and C~~ are the complex amplitudes of 
the modes with wave vectors k and - k and fre
quencies wk and - wk when the interaction be
tween modes is neglected. 

The following postulate plays a basic role in the 
derivation of the kinetic equation: the phases of the 
various modes ak = arg c~> are distributed com
pletely randomly. This assertion is to be under
stood in the following sense. It is assumed that 
the modes (2.3) are excited as a result of some 
instability (below we consider the concrete case of 
the so-called decay instability, which has been in
vestigated in detail earlier by Oraevski'l and Sag
deev [to]). For some time interval after the insta
bility develops the phases of the different c<~ are 
obviously correlated. However, the nonlinear mode 
interaction described by the second term in (2.1) 
weakens the correlation. This weakening of the 
correlation occurs more rapidly the higher the 
mode that appears as a result of the development 
of the instability. 2> 

The random phase approximation means that 
the correlation between the phases Ck vanishes 
completely in a time small compared with the time 
required for a change in I Ck 12 (i.e., the energy 
of individual modes) owing to the nonlinear inter
action between modes. For this reason we can 
average over the phases in the derivation of the 
kinetic equation (in the sense of averaging over an 
ensemble of the aggregate of phases of the different 
Ck): 

c<o>c<o> I c<o> 12 " k k' = k Uk', k_ • (2.4) 

We divide the plasma into a slowly varying back
ground and a rapidly oscillating part; the latter 
represents the propagating waves in the plasma. 
The energy density of these waves is 

(f = 2JEk. Ek =I ck 12 {Po I vk 12/2 +I hk l2 /8lt}. (2.5) 
k 

Normalizing the state vector 'Pk by means of the 
condition 

(2.6) 

we can interpret the square of the modulus of the 
wave amplitude nk = I Ck 12 as the number of quasi
particles with energy wk. 

It is clear that the total energy and momentum 

21fowever, the amplitudes of these modes must obviously 
be small so that perturbation theory can be applied. 
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of the background and quasiparticles are conserved. 
Furthermore, it can be shown in the semiclassical 
approximation that if the background varies slowly 
the adiabatic invariant nk = Ek/ wk ( the oscillator 
energy divided by frequency) is conserved for each 
quasiparticle [GJ i.e., the total derivative 

D (E /wk) /Dt ==: Dn/Dt = 0. (2. 7) 

The change in the number of quasiparticles nk 
in a given state due to collisions between quasipar
ticles is described by the nonlinear term in (2 .1) 
H1 { cp, cp}. Perturbation theory can be used if this 
nonlinear term is small. In the expansion in (2 .3) 
we now add to the state vector the orthogonal com
ponent cpft arising from the nonlinear interaction. 

It will be shown later [ cf. Eq. (2.9)] that cpk is 
a first-order quantity if the amplitude ck is a 
first-order quantity. Thus, the solution that takes 
account of the interaction between modes is sought 
in the form 

(2.8) 

Substituting (2 .8) in (2 .1) we have to second order 

lution of ~k for the homogeneous complex equation 
are given in Appendix 1. Using the expressions in 
Appendix 1 we obtain an explicit expression for the 
matrix element from (2.11) 

2 ' " X (B" + 1 )]-'/, c A f- k_x-:cc_A_,kY'---k"--y 
B" lwl\ w~A'A" 

+ k' [(1-B)B'w" -B'B"~ 
x w' w' 

+ ~ + ~ B' ____!!__ + k ( 1 -B) B" ~- B' B" ~ ' " k J . [ ' 
k'2 c2 k"' c2 k' x w" w" 

A A y 

'] '[ ''2 "'2 ww" ~ B" .5!_ _ Bky }2_ kxkyc A _ kxkyc A 
+ k"2 2 + k'2 2 k" -f A' k + ww' ww' CA CA y y 

_ ( k~ w" _!Jl"_) [k'k"lz] Bk~- [hx k:k~c~ _ k>;c~ 
k w' + w k" 2 + A" k + ww" ww' y y 

k w' w' z ~ " . I [k"k'] l\ 
-(~ w"+w)~_j' (2 .12) 

where H0 is the fixed magnetic field along the y 
axis, A= 1 - I?c~/w2 , B = w2/~c~- 1 and the 
corresponding quantities with one or two primes 

are obtained by replacing w and k and w' and k' 

+ 'V C C H { } -'<"'k'+"'k"-"'kl1 (2.9) or w" and k" respectively. "-- k' k" 1 Cflk'' Cflk" e · 
k'+k"=k Perturbation theory is used to determine Ck(t) 

at time t. From (2.11) we have 
The condition for solving (2.9) to determine cpft 

is that the right side must be orthogonal to the Ck (t) = C~l) + Ck1) + CL2> + ... , 
solution of the conjugate equation 1 

.:h (w + H (k)) o (2.10) Ck1> ==- i ""· Ck~>ck~/ .\' Vkk'k" (t') dt', 
't'k k 0 = ' L; .\ 

k'k" 
where ~k is a row vector. Multiplying (2.9) scalarly 1 r 

by ~k from the left we have Ck2> =- 2J ~ cL~)c~~)c~~> ~ dt' \ dt"Vkk'k" (t') Vk"q'q" (t") 

Rewriting this in the form 

where 

we obtain the dynamic equation (2 .11) for the Ck(t). 
The eigenvectors CfJk of the operator H0, the 

explicit form of (2.9) for the actual magnetohydro
dynamic equations with ion dispersion, and the so-

k'k" q'q" 0 0 

t t' 

- 2J :L, clc~!c~~>c~~) ~ dt' ~ dt"Vkk'k"(t') vk'q'q" (t"); 
k'k" q'q" 0 

Vkk'k"=fo=O for k=k'+k". (2 .13) 

The quantity c~l is time independent and corre
sponds to the solution in the absence of interaction 
between modes. The change in the number of quasi
particles I Ck(t) 12 - I c~l 12 averaged over the 
phases of c<U by means of (2.4) is (to second order) 

1 ck (t) 12 -I cleo> 12• = 1 c~cl> 12 + (C~>cL2 >· +cLo>'cL2>). (2.14) 
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Substituting (2.13) in (2.14), averaging over the 
phases of the c~>, and using the relations 

I 

I~ vkk'k" (t') dt' 1
2

--'.> t2:rt I vkk'k" 120 (wk' + (l)k" - wk); 

0 

vkk'k" =- v·' , ", k_,k_, k_ (2.15a) 

(2.15b) 

[ (2.15a) and (2.15b) can be verified using (2.12); it 
is important that (2.15b) be satisfied for the condi
tion Wk = Wk' + wk"• wk'• wk" > 0] we obtain the 
change in the number of quasiparticles per unit 
time due to collisions: 

In this equation the summation is taken only over 
modes with positive frequencies Wk, Wk'• and Wk"· 
This relation yields the conservation of energy wk 
and quasi-momentum k for "collisions" between 
modes. We note that (2.16) is of the same form as 
the kinetic equation proposed on the basis of phe
nomenological considerations in [ 6]; however, [ 6] 

contains neither the explicit matrix elements nor 
the method of obtaining them. 

It is interesting to note the analogy between (2 .16) 
and the kinetic equation for phonons in a solid. [ 2] 

If we write nk ~ 1 in the latter (neglecting the 
explicit form of the matrix elements) it becomes 
(2.16). We note also that ( ank/ot)s vanishes when 

(2.17) 

where T is the effective temperature of the mode 
gas (in energy units). The expression in (2 .17) is 
nothing more than the Rayleigh-Jeans distribution. 

3. CRITERIA FOR DECAY INSTABILITY 

Using the formalism developed in the preceding 
section we can formulate easily the criteria for 
the decay instability treated earlier by Oraevskil 
and Sagdeev. [lo] Specifically, suppose that a wave 
characterized by frequency wk and wave vector k 
propagates in the plasma. Then perturbations in 
the form of two waves, with frequencies Wk'• Wk" 
> 0 and wave vectors k', k" that satisfy the con
ditions 

k' = k -k", (3.1) 

grow with time. 

From (2.11) and (2.15) we have a system of two 
equations for the amplitudes Ck' and Ck": 

'ack,fi)t = - iV cko)ck" 
k'kk~ ' 

ack::_fiJf =- iVkc', L, k'Ck0~Ck' =:= iV:,WcCk0~Ck'· 

Since the perturbations Ck' and Ck" are small the 
amplitude c~> may be taken as constant ( ac~> /ot 
~ Ck'Ck" ~ 0 ). We seek a solution of this system 
in the form evt and obtain the growth rate 

"2 = I v " 121 c(o) [2-
k'kk- k 

(3 .2) 

If the perturbations are such that wk' > wk" 
> 0 and the decay conditions 

k' = k +k", (3.3) 

are satisfied, we have a system of equations for 
determination of the amplitudes of the small per
turbations: 

ack'/ot = - iVk'kk"cko)ck"• 

iJCk"/iJt = - iV k"L, k'Ck0~Ck' =:= - iVi':'kk"Ck02Ck"· 

Using the solution evt we find 

'V2 = -l vk'kk" !2 i c~l) !2 < 0, (3.4) 

that is to say, the wave is stable. 
Thus, the decay instability can only lead to the 

excitation of modes with frequencies lower than the 
original frequency. 

4. DECAY INSTABILITY OF THE OSCILLATORY 
STRUCTURE OF SHOCK WAVES 

We apply the results of the preceding section to 
the question of stability of the oscillatory structure 
of weak shock waves propagating in a strong mag
netic field. If the shock wave propagates at right 
angles to the magnetic field its oscillatory struc
ture can be regarded as a wave of frequency w0 

and wave vector k0 [ 7J where 

k 0 = V 1/ 2 (I- M 2}V m)me WH / CA, Wo = koCA M, (4.1) 

and M is the Mach number. A curve of the laminar 
profile is shown in Fig. 1a. The arrow indicates 
the direction of motion of the wave. 

If (M - 1) ~ me/mi the wave frequency w0 

is appreciably greater than the ion Larmor fre
quency wH. In this case, the conditions (3.1) for 
a perturbation in the form of two fast magnetoacous
tic waves, one of which propagates almost perpen
dicularly to the magnetic field [ cf. Eq. (A.3)], 

k' (1 + k';c~/w~) = k0cAM- w+- (k"), 

(4.2) 
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FIG. l. Qualitative 
profile of the change in 
magnetic field in a 
shock wave propagating 
at right angles to H: 
a) laminar case, b) tur
bulent case. 

can be satisfied only when kyc A ~ -J M - 1 WH 
~ wH· In this case the matrix element Vkk'k" is 

/ww'w" 1 (. l <) 
vkk'k" ~; 11 -----= 1 +- --

y H~j8n V 2 · :2 k" · 
(4.3) 

The conditions (3.1) can also be satisfied for a 
perturbation in the form of a fast [ w" = w+ ( k")] 
wave and a slow [ w' = w_ ( k' )] wave. The expres
sion for the matrix element Vkk'k" is easily ob
tained from (2.12) in two limiting cases: 

(4.4a) 

(4.4b) 

However, in (4.4a) the frequency of the slow wave 
is very close to the ion Larmor frequency w' ~ wH 
and this wave is strongly damped [1l] if one takes 
account of even a very small thermal spread in the 
ion velocities. Hence these waves do not exist in 
practice and the decay indicated by (4.4a) does not 
occur. 

The growth rates for the decay instabilities (4.2) 
and (4.4b) are of the same order for small Mach 
numbers 

v1 ,2 z(M-l)w0 • (4.5) 

As the Mach number increases M - 1 > V me/mi 
the increment in (4.5) becomes of the same order 
as the frequency of the Alfven wave w' = kyc A in 
the decay (4.4b) and, formally, can even be greater, 
as follows from (4.5). In this case the criteria for 
the application of perturbation theory ( "'2:; w', w") 
are no longer satisfied. It is reasonable to as
sume, however, that the growth rates at these 
large Mach numbers cannot exceed the frequency 
of the perturbation, i.e., v2 .:5 w'. The interaction 
being considered is actually a resonance effect 
[ cf. (3.1)] and the notion of a resonance is no longer 
meaningful if "'2 = Im w' > Re w'. 

In what follows we treat Mach numbers that are 
not too small ( M - 1) > ~ me/mi so that it can be 
assumed that v1 > v2; consequently the oscillatory 
structure of the shock wave decays in accordance 
with (4.2). 

If, however, the shock wave propagates at an 
angle with respect to the magnetic field ( e 
» -J me/mi) so that there is an ion dispersion ef
fect, the oscillatory structure can be regarded as 
a wave characterized by frequency w0 and wave 
vector k0 [S] (a curve of the laminar profile is 
shown in Fig. 2a) given by 

FIG. 2. Qualitative pro
file of the change in mag· 
netic field in a shock wave 
propagating at an angle to 
H: a) laminar case, b) tur
bulent case. 

r a 
I --
l(t-~·-

In this case the condition in (3.1) is satisfied by 
the frequencies w' = kyc A and w,Yc A and wave 
vectors k' and k" of a perturbation in the form 
of two Alfven waves. The matrix element describ
ing the interaction of these waves is 

11 ( ww'w" t kc 
V kk'k" =co . Y H~j8n VH k ' (4. 7) 

while the growth rate is of order 

v z s-''' (M -- 1)'/'<oH tg-1 e for tg 0 ~ I. (4.8) 

5. EFFECT OF TURBULENCE ON THE STRUC
TURE OF A SHOCK FRONT 

In this section we evaluate the effect of the tur
bulent oscillations arising from the decay insta
bility on the laminar oscillatory structure of a 
shock wave. We first write the complete kinetic 
equation for the waves using (2.7), (2.16) and (3.2): 

ank ank dx ank dkx dx lank) ( 
(j{ + ax dt +- dkx dx dt = \at s + 2vnk. 5.1) 

Here, the change in the number of modes in a given 
volume is equated to the change due to collisions 
and the increment due to the decay instability. The 
derivative is determined from the condition that 
the frequency is a constant in the coordinate sys
tem moving with the shock wave wk + kxu while 
dx/dt = awk/okx + u is the group velocity in this 
coordinate system ( u is the plasma flow velocity 
with respect to the shock wave). 

Equation (5.1) has been used without a wave 
source in [G] to construct the structure of the shock 
wave in the turbulent mode. The energy source for 

*tg =tan. 
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the turbulent oscillations proposed by these authors 
was the change in frequency in the rest system of 
the plasma ( which is consequently proportional to 
its energy) moving through a flow field of variable 
velocity. However, in considering quasiparticles 
moving together with a shock wave one must work 
with the energy in the coordinate system fixed in 
the shock wave. It can be shown from the equation 

ant; ank ( awk ) - !!:!:__ ank - (ank) 
at + ax u + ak kx dx ak - at ' 

X X S 

(5 .la) 

used in [G] that this energy is obviously conserved 
because the number of quasiparticles nk is con
served in the slowly varying flow field as is their 
"energy" wk + kxu; the energy 1: nk ( Wk + kxu) 
must also be conserved in the collisions. Thus 
there is no energy source for the waves in this 
scheme and a question arises as to where the energy 
comes from. The decay instability of the oscillatory 
structure of the shock wave can be such a source. 

As an example we analyze the propagation of a 
weak shock wave across a strong magnetic field 
( H2 /8rr ~ p). As shown in the preceding section, 
the oscillatory structure of the shock wave is un
stable and decays with the growth rate given by (4.5). 

The low-frequency waves produced in the decay 
(frequencies ~ k2yc A ~ ../ M - 1 WH) propagate at 
large angles with respect to the direction of propa
gation of the shock wave and are rapidly carried 
away by the flow. However, waves withfrequencies 
w ~ wH are propagated in essentially the same 
direction as the shock wave ( the angular spread of 
these waves is of order k2y/k0 ~ ../ me/mi) and 
hence are practically not affected. When these 
waves collide with each other low-frequency waves 
are produced; the destruction of the latter results 
in the eventual dissipation of the energy of the high
frequency waves. 

Using (4.3) we can estimate the change in the 
number of these waves due to collisions: 

(oNk I of)s = Nk/r, -r = 21n:~w", 
li = + L} Nkffik I (H~18n:), (5.2) 

k 

where T is the collision time for the waves, Nk is 
the number of high-frequency waves with frequency 
wk ~ w0, 1f is the ratio of wave energy to magnetic 
field energy. 

Since the number of waves produced per unit 
time vN ~ ( M - 1) w0N cannot be balanced by the 
loss of these waves due to collisions N/ T ~ lfw"N, 
it is reasonable to assume that all the energy of 
the laminar shock wave is transferred into energy 
of waves in the group, i.e., 

(5.3) 

Equating the change in the number of waves N in 
the volume to the wave loss (5.2) due to collisions 
we obtain an estimate for the wave distribution in 
space (we use the coordinate system fixed in the 
packet) 

or 

i.e., the change in density can be approximated by 
the exponential relation 

. (5.4) 

The corresponding turbulent profile is shown in 
Fig. lb. 

If the shock wave propagates at an angle to the 
magnetic field H0 that is larger than ../ me/mi 
the ion inertia term becomes important. In this 
case the wave is unstable and decays into waves 
traveling at very different angles with respect to 
the direction of propagation of the shock wave [ cf. 
(4.8)]. Hence, a large part of the energy converted 
into turbulent oscillations as a result of decay is 
carried away by the flow. 

Because of the small energy in the turbulent 
oscillations {3 ~ ( M - 1 )2 ~ 1 the collision time 
for these oscillations is very large so that the 
basic process that reduces the number of oscilla
tions is their destruction. Equating the growth in 
oscillations caused by decay with the destruction, 
we obtain the distribution of oscillations in space: 

2vnk = CA onkiOX. 

Using (4.8) we write this relation in the form 

(5.5) 

where 

tge ~ 1. 

Thus, when the decay instability of the shock is 
introduced the length of the oscillatory structure 
cannot reach the value c A/ vei ( vei is the fre
quency of electron-ion collisions) that obtains in 
a collisionless plasma since the appearance of the 
oscillatory structure leads to its own decay. The 
width of the shock wave is found to be relatively 
sensitive to the direction of propagation of the 
wave and is determined by the characteristic di
mensions appearing in (5.4) and (5.5). However, 
the order-of-magnitude of the frequency of the 
turbulent oscillations coincides with the frequency 
of the oscillations of the laminar structure and is 
sensitive to the angle. The pattern of the turbulent 
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profile in this case is shown in Fig. 2b. 
The authors wish to thank R. Z. Sagdeev for 

stimulating discussions and valuable comments. 

APPENDIX 

When the magnetohydrodynamic equations with 
ion dispersion (1.1) and (1.3) are introduced in 
(2.1) the latter assumes [for A= exp {- i (wk' 
+wk" - wk) tJ the form 

_ C , _ C [[kh~J Hol _ .ack 
Olk kVk k 4 JIPo --· l ot Vk 

~ ck.ck" { (vk·k") vk" 
k'+k"=k 

- 4~rJ[k'hk'J, (hk"- P;: Ho)]}A. 
, , ack 

-wkCkhk- Ck [k [vkHoll =iTt hk 

+ 2. ck.ck" {[k [vk-hk"ll 
k'+k"=k 

- i- k [k'hk' l hk" -- H A cmi [ [ ( Pk" )]]} 
4npoe Po 0 ' 

ck.ck"Pk' (vk·k) A. 

(A.1) 

It is easily shown that we need write only the 
components along the x and z axes for (1.3). The 
The third equation is equivalent to div h = 0, i.e., 
hx = - kyhy /kx. If the right side of (A.1) is set 
equal to zero we have 

(A.2) 

for determining the eigenvector <flk- Solving (A.2) 
we find the co~ponents of the eigenvector <flk of 
the operator H0: 

Writing (2.10) in explicit form by means of (A.2) 
we obtain the solution of the conjugate equation: 

'li's = 0, 

The natural frequencies are determined by the 
expression 

w±=+cA(V<k +ku)2 +c3tk2k!lw~ 

(A,3) 
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