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An attempt is made to classify elementary particles on the basis of nonlinear field theory and 
to derive the mass spectrum of baryons, mesons, and "resonons." 

l. The recent discovery of resonant states [ 1] has 
greatly enriched the family of elementary particles. 
It has led an additional basis for their classifica
tion and new approaches to the mass spectrum. 

There is a basis to suggest that the mass spec
trum can be derived from a single expression 
through the assignment of definite values to some 
parameter. For example, if the fermions are ar
ranged in a series of increasing mass and are 
numbered (as is done in Table I), then the straight 
line 

En o= I -f nj6 (1) 

( E 0 = Enucl = 1; n = 2q = 0, 1, 2, is the number 
of the state) gives rather good agreement with the 
empirical mass-spectrum curve (see Fig. 1 ). 

2. An expression for tl\e mass spectrum was 
derived in [2] on the basis of nonlinear spinor 
theory. This expression contains parameters by 
means of which the states can be classified and, 
moreover, two free parameters, which, when suit
ably chosen, lead to a mass spectrum very close to 
the experimental one. The expression was derived 
from the nonlinear Lagrangian 

(2} 

where l is a nonlinear parameter and {3 is the de
gree of nonlinearity. 

Using the exact wave solutions lj! = x ( s) x 
exp (ikiJ.xiJ. ), x* ( s )x ( s) = NL3 (for N = 1), we de
termine the charge, spin, and energy of the field. 
Since the charge and spin are proportional to 
(x*x) L3 and the energy is proportional to Cxx)f3L3 , 

then we cannot eliminate the volume of integration 
L3 from all the expressions by means of normali
zation. 

Hence the energy (i.e., the rest mass for k = 0) 

1lThis paper was first presented at the Theoretical Confer
ence, Joint Institute of Nuclear Research, May, 1962. 
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FIG. 1. Dependence of the baryon mass on the number 
n = 2q (E0 = EN = 1, q = p + r). The black circles represent 
the experimental points; the dashed curve represents the 
average experimental data, the solid curve was obtained 
from formula (1); the open circles and the dash-dotted 
curve was obtained from formula ( 4) with {3 = 7/2. 

of the field is essentially dependent on L. Thus [2] 

= 13/(3{3-4) - _!_ ( !!:_)(3{3-3)/{3/l-4) 
En _ (k0 l) - 2 4n [3 , 

L = 2n n = 2n !!:_ 
Ul ko [3 ' 

(3) 

where k0 is the rest mass of the field contained in 
the volume L3 and w is the frequency. For k = 0 
( k is the wave vector) and N = 1, we have w = {3k0 • 

3. To determine the state spectrum (i.e., the 
values of n ), we set up a boundary value problem. 
Since the system has a characteristic length L and 
the solution is a periodic function, then requiring, 
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Table I 
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for example, that 1/J( O) = El/J( Lw), E = ± 1, we obtain 
Lw = 2rrr for E = + 1 and Lw = rrr for E = - 1 
( r = 0, 1, 2, ... ), i.e., Lw = 2rrn, n = 0, 1/2, 1, .... 
As is seen, the introduction of a nonlinear interac
tion in the field equation is equivalent, in a certain 
sense, to the introduction of a "nonlinear potential 
well" of width L and depth d = d ({3 ). The values 
of L and {3 determine the character of the state 
spectrum. 

We now fix the ground state (the nucleon in the 
case of heavy fermions, and the neutrino in the 
case of leptons) by taking n = n0• The deviations 
from the ground state tJ.n = n' - n0 should separate 
into two groups, one of which is characterized by 
half-integral intervals and the other by integral 
intervals ~n: 

!1n* = 0, I, 2, ... = r. 
States obtained in the first way will be called hy
perons ( p is the hyperon quantum number). States 
obtained in the second way will be called resonons 
( r is the resonon quantum number). Then (3) takes 
the form ( q = p + r) 

{ 
q }(3{>-3)/(31'-4) 

En,+q = En, 1 + no , 
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of these numbers (see Table I). 
In order to obtain numerical values, it is nec

essary to fix n0• For this purpose, in the case of 
the ground state, we set L = 2rr/k0, i.e., n0 = {38 
( e = 0 corresponds to the neutrino and e = 1 corre
sponds to the nucleon). Then f3 is restricted so 
that {3 = K/2, K = 0, 1, 2, . . . . It can be shown that 
a reasonable spectrum is obtained only for {3 = 7/2 2 ) 

or f3 = 4 (see Table I) (until now {3 has usually 
been taken to be equal to 2 in the theory). 

With the given normalization of the solution 
( N = 1), the spin of the field is S = li/2. However, 
we can change the normalization ( N 7f!. 1) so as to 
obtain other desirable values of the spin without 
changing the state spectrum (only the energy scale 
changes). 

4. We now consider transitions between two 
states (in the special case {3 = 7/2). For the tran
sition energy we have 

Wp'--p; r'-r = Ep', r'- Ep, r = £1'- {(76' + 2q')"fu- (70 + 2q)"h'} 

= E" {7 (6'- 6) + 2 (q'- q)} = E" {76* + 2q•}, 

6'==:0'--6, q'=q'-q, q'=p'+r', 

p* = p'- p, r* = r' - r, (5) 

_ 1 ( no )(3{>-3)/(31'-4) 
En0 - 2 4JCT . (4) 2>In the special case {3 = 7/2, ·we obtain from (4) the ex-

Although the energy depends only on one number 
(q = p + r), the state is determined by two numbers 
(p, r); we can therefore classify the states in terms 

pression [see (1)]: 

"! En,+q (~ = 7 12) =En,{()+ 2q/7} "::::::;En, {8 + 16/13 ·2q/7 + ... } 
=En,{()+ 2q/6 + ... }. 
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Table II 
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I Mesons 

State Mass 
q*=p*+r* (p *, T *) 

I experiment 

Transition frequency* 

theory experiment "'q,+q*-+q, (/3 = '/,) 

0 (0.0) .Qo r 0 0,0 -
1/2 ('/2, 0) :rio :rio 0,147 0,16 0,20 
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l (0.2) n· 2 \; 0,639 
( (5/2, 0) ~0 - -

5!z i (3/2, 1) K\2) • = :r~; p 0,834 0,86 0.88 

l (1/2, 2) K\ll* (t) 0,848 

r (6/2, 0) r~ - -
(4/2, 1) (l! - - 1.04 -

3 1 (2/2, 2) -&* K*=(K:rt) 0,94 2 
~ (0.3) n· 

3 e (?) 1,06 (?) 

*In view of the fact that the transition energy depends not only on two numbers 
(p*, r*) but also on other parameters, a separate frequency spectrum appears about 
each state (p*, r*)• 

where 

£ 1, = En.· 7-"/u = 0.106, 

En,=Enucl= 1. 

If we roughly identify the radiation field with the 
meson field (to an accuracy of the kinetic energy), 
we find that the mesons, in a first approximation, 
can be characterized by two numbers ( p*, r* ) ( tak
ing B* = 0) and they can be classified correspond
ingly. Since in the general case the mesons are 
characterized by four numbers (taking B* = 0), 
then a fine structure occurs [ 4] close to each state 
(p*, r*) (see Table II). 

5. The lepton group is obtained with B = 0. It is 
quite possible that most of these states are not re
alized in practice, in view of the extremely small 
lifetime. In Table I, we have limited ourselves to 
a state of fermions with E :s 2E 0, i.e., states whose 
energy is less than the deuteron mass. If we allow 
for heavier fermions, then we should allow for 
bosons that are heavier than the nucle·on. 

In view of the fact that the theory is invariant 
relative to homologous (scale) transformations, we 
can introduce the following quantum numbers: [ 2 •3] 

Sr ( sr = - 3/2) is the analog of the spin operator, 
R ( Rlj; = - rlj!, r = 0, 1, 2) is the analog of the orbital 
angular momentum operator, and J' = R + Sr 
[ J = - ( J' + 1) = ( 2r + 1 )/2] is the analog of the 
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FIG. 2. rDependence of the baryon mass on] [] = (2r+ 1)/2]. 
The black circles and the dashed curves represent the experi
mental data, the open circles and the solid curves were ob
tained from formula (6) with {3 = 7/2. 

total angular momentum operator. The eigenvalues 
of R can be compared with the "resonon quantum 
number" r. The quantity J = (2r + 1 )/2 turns out 
to coincide with the orbital angular momentum of 
the fermions, [l] and for the energy E<J> we obtain 
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(see Fig. 2) (for the nucleon resonons the values 
of J were chosen on the basis of poorly known ex
perimental values. 

E(J) = En, r -i; 2P + f J}"/" = Ef.' {5 + 2p + 4J}. (6) 

6. If we now assume that the width of the non
linear potential well L contains almost, but not 
exactly, integral (or half integral) numbers of 
wavelengths, i.e., Lw ± a = 2trn, a = 2tra 0, we ob
tain an additional hyperfine structure. If, here, 
a 0 is determined from the requirement that E 0(a 0 ) 

- E0( a 0 = 0) = Ee - Ev = 0.51 MeV, then we ob
tain a 0 ~ 1/190 and, further, En0(a 0)- En0(a 0 =0) 
= EN+- ENo = 1.6 MeV (N is the nucleon) with 
the experimental value 1.3 MeV. 

Hence, simple analysis of the conclusions of the 
nonlinear theory permits us to arrive at a rather 
satisfactory semiempirical formula (1) for the mass 
of elementary particles which apparently reflects 
certain deeper basic properties. 
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