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A covariant form of expansion of an arbitrary electromagnetic vertex in terms of relativistic 
multipoles is presented. Use is made of the irreducible tensors of the little Lorentz group 
Lu ( u is the four-velocity of the center of inertia), which are the analogs of the multipole 
moments of the classical theory. These tensors are constructed from the wave amplitudes of 
the particles participating in the decay process with the help of a transformation which is con
nected with the parallel transfer of vectors and spinors in Lobachevskil space. [ 5] The same 
technique is employed to investigate the structure of the {3 decay Hamiltonian in the universal 
weak interaction theory. The number of different types of form factors for {3 decay of par
ticles with arbitrary spin is computed and a relativistically invariant classification of {3 tran
sitions in terms of degrees of forbiddenness is given. 

SMORODINSKII and the author [i] have considered As shown by Smorodinski1, [ 5] the transformation 
the multipole radiation of a classical system of (1) corresponds to the parallel transfer of a tensor 
charges in a relativistically covariant manner. Use (or spinor) along the geodetic line of the hyperbo-
was made of the irreducible tensors of the little loid u~ - u~ - u~ - u~ = 1 connecting the points 
Lorentz group Lu, where u is the four-velocity of uci> and u. If the spatial axes of the reference 
the center of inertia. It is of interest to apply this systems u<i> = 0 and u = 0 are parallel then ob-
method to the investigation of the phenomenological viously 
structure of electromagnetic vertices in relativistic 
quantum field theory. In expanding the electromag
netic vertex in terms of irreducible representations 
of the group Lu it is important that the velocities 
of the particles before and after the decay are dif
ferent. The method applied here to the study of 
electromagnetic radiation and j3 decay of particles 
with arbitrary spin can also be used for other pro
cesses without essential modifications. 

1. IRREDUCIBLE TENSORS OF THE LITTLE 
GROUP Lu 

In the majority of papers [2- 4] the S matrix for 
various processes has been studied in the center of 
mass system (c.m.s.). On the other hand, the 
spinor functions of the particles and their polariza
tion parameters are always given in the rest sys
tem of each of the particles. 

In order to add the spins in the c.m.s. it is 
natural to transform the basis functions of the little 
groups Luci>' where the um are the four-veloci-

ties of the particles, into the equivalent basis func
tions of the little group Lu ( u is the four-velocity 
of the center of inertia). Let us write this trans
formation in the form 

cp" = T (u<i) u)cp. (1) 

(2) 

The equality (2) can be used for a relativistically 
covariant formulation of the transformation (1). 

For a particle with integer spin the quantity cp 
is a symmetric irreducible tensor of rank s which 
is orthogonal to u<i>. The transformation from cp 
to cp" is given by the following simple formula 
(everywhere AB = AB + A4B4, ~ = iA0 ): 

cp:!Jy ... s = TcxkTMTym •.• Tsncpklm ... n' (3) 
where 

T cxk = 6cxk + (uu) + u)cx (u(t) + u)k/(1 + Y<t)) (4) 

[in our notation Yci> = - u(i)u]. 
We note that formula (4) can be obtained immedi

ately by analogy with the parallel transfer of three
vectors referred to the surface of the unit sphere. 

It is easily verified that 

m"u =0. 
... CI. C1. (5) 

A particle with half-integer spin is, in the Ra
rita-Schwinger formalism, [s] represented by a 
bispinor all components of which are irreducible 
tensors of the group Lu . of the rank s - 1/2. 
For a Dirac bispinor (l > 

T(u·u)= ,(1+r(i) (1-r:;cx!Ju(i)cxuil) 
(l) v 2 1 + l(i) ' 

(6) 

382 
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where u a{3 = (Ya'Y(3 - 'Y(3Ya)/2i. In the c.m.s. the 
two small components of cp" are zero in accord
ance with (2). 

Formulas (3), (4), and (6) allow us to write down 
the transformation (1) for particles with arbitrary 
spin. The parallel transfer of vectors was discussec 
in detail by Smorodinskil, l 5J cf. also [ 7]. 

Using the spinor amplitudes cp~2 and cp~ 1 con
nected with CfJs1 and CfJs2 by the parallel transfer 
transformation (1), we can easily construct irre
ducible tensors and pseudotensors which are ortho
gonal to the four-velocity of the center of inertia u. 
As we shall see below, these are in a certain sense 
equivalent to the multipole moments of the classical 
theory. [t] 

In the following we shall denote the irreducible 
tensors of the little group Lu by (cp8:CfJs1)<Ll and 
the pseudotensors by (( cpg{ C{Js1)) < Ll ( L indicates 
the rank of the tensor). The relation between the 
relativistic tensors and the wave functions in the 
space of the spinor indices [B •9] is given by the 
standard Clebsch-Gordan formula: 

(7) 

where, according to the covariant Michel theory of 
polarization, [ 9,10] m1 and m2 are the projections 
of the four-vectors S{' = TS1 and Si' = TSz on the 
unit four-vector along the axis of quantization in 
the c.m.s. 

It is interesting to note in this connection that 
the states of polarization of particles A and B 
with identical spin are to be regarded as equivalent 
if their wave functions and polarization parameters 
are related by the transformation (1): 

cp~ = T (ulu~) cpA = cp B' s: = T a.k (ulu2) skA = s"-B' (1a) 

2. THE DECAY A=B+y 

Let us consider an electromagnetic vertex with 
three external lines. In the most general case the 
transition of particle A to particle B with emis
sion of a photon is described by the S matrix ele
ment 

(plsll S I P2S2ke) 

= i V 4n:(2n:)4 (C,e~) [-2 (ku)J-'1'64 (p1 - p2 - k). (8) 

Here e is the polarization four-vector of the pho
ton, and the wave functions of the particles A and 
B are normalized to unit volume in the c.m.s., 
which in this case coincides with the rest system of 
the particle A: u = Ptlmt. 

In the rest system of particle A the emission 
rate per unit time is 

It follows from energy-momentum conservation 
that the masses of the particles are different for 
k2 = 0. The frequency of the emitted radiation is 

w = -(ku) = m1 + (p2u). 

From this we obtain easily 
m2- m2 ~ 

w = 1 2ml 2 = ( 1- 2~) Am, (9) 

where 6m = m1 - m2 . 

The frequency w is independent of the direction 
of the momentum n = k/k0• The recoil velocity of 
particle B is uniquely related to the mass difference: 

( ~m) I ( (~m)2) v = - n I - Zm1 !l.m m1 - !l.m + zm1 • (10) 

Let us now return to formula (8). In virtue of 
gauge invariance r satisfies the continuity equa
tion 

fa.ka. =0. (11) 

We can therefore write in the most general case 

(12) 

where Ma{3 is an antisymmetric four-tensor which 
depends only on the spins of the particles A and B 
and the four-momentum of the photon, k. Let us 
write Ma(3 as a sum of two tensors, one of which 
is orthogonal to the four-velocity of the center of 
inertia: 

Ma.f' = i {ua.N{3- Uf>Na. + eaf3y5M.,.us}. (13) 

Here Ea(3y6 is the completely antisymmetric 
unit tensor ( E1234 = iE1230 = i), N is a polar four
vector, and M is an axial four-vector, where 

Nu =Mu =0. (14) 

It is easily seen that (13) corresponds to sepa
rating the transition current into an electric and a 
magnetic part. 

In the system where* u = 0, N ={N, 0}, M 
= {M, o}, 

<lSI> =V4n: (2n:t {w (Ne·) 

+ w ([Mn]e•)} 63 (p2 + k) 6 (m1 -E2 -co). 

Each of the vectors N and M depends in general on 
the direction n = k/k0 and on the spin states of the 
particles A and B. In order to express this depen
dence in covariant form, we introduce as before [1] 

the irreducible tensors of the group Lu, T(L), which 

*[Mn] = M x n. 
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are constructed with the help of the space-like unit 
vector 

n = (k t uk(~u)) = : + u (ku) I (nu = 0). (15) 
- u k2 + (ku)2 k'=o 

In the c.m.s. the usual relation between the com
ponents of the tensor T<L> and the spherical func
tions YLM obtains (see, e.g., [a,tJ). 

In the most general case we can exhibit the de
pendence of N and M on the direction n in the 
following way: 

Na. = ~ (-ku)L-IC(L-1) N~7/Y ... 8 r&~-::-1l+ ana.. 
L:;;,r 

Ma. = ~ (-ku/- 1 C(L -1) M~7/Y ... aT&~-::-1J+bna.. 
(16) 

-. /4Jt ·L f (2L)! 
C(L) = V 2L+ 1 1 (2L-1)!!' 

(17) 

and the tensors N<L> and pseudotensors M<L> are 
proportional to the irreducible tensors of the little 
Lorentz group Lu constructed from the spinor am
plitudes of the particles A and B. Thus 

N (L) G(L) ( 2 20) < "* >(L) 
a.~y ... 8 = mlm2 <rs, <rs, a.~y ... 8' 

M - n<L'> (m2m20) << "* >><L'> , a.~y ... 8 - I 2 <Jls, <Jls, a.~Y ... 8 
(18) 

where a<L> and n<L> are invariant functions of 
the variables mi, m~, and ~ taken at a physical 
point with given fit, m2, and ~ = 0. 

We note that the four-vectors ana and bna ( a 
and b are relativistic scalars ) do not contribute 
to the radiation, since the three-dimensional trans
versality condition [t] (ek = 0, eu = O) leads to the 
relation 

en =0. (19) 

We shall therefore leave them out in the following. 
It is easily seen that the quantities L and L' 

in (16) are restricted by the inequalities 

I S1 - s2 1 <;:L; L' <;:I s1 + s2 /; L, L';;;:;;, 1. (20) 

If the relative intrinsic parity of particles A and 
B is positive ( Tl = 1 ), L takes only even and L' 
only odd values within the limits (20). If the rela
tive intrinsic parity of A and B is negative ( Tl 

= - 1 ) , then L takes only odd and L' only even 
values. In both cases the number of form factors 
a<L> and n<L> is equal to 2st + 1 if St < s2 or to 
2s2 + 1 if s2 <St. If St = s2 = s, the number of 
form factors is equal to 2s. 

The unitarity condition for the S matrix leads 
in first approximation in e2 /lie to real values for 
all form factors a<L> and n<L>. 

Substituting (16) in (12) and (13), we can write 

with the help of the relativistic electric and mag
netic multipoles introduced in [t]: 

r a.e; = ~ K (L) (- ku)L N&~> ... 8 (£~7/y ... 8 e;) 
L:;;,r 

+ ~ K (L') (- ku)L' M&~~~.a (~~7/Y ... ae:), 
L':;;,r 

K(L) = J/(L+ 1)/LC(L). (21) 

The relativistic multipoles are given by the formu
las 

<L> ( k ) a r<L> I Ea.~y ... 8 = - u 7ik fly ... 8 k'=O• 
a. 

<L> k ( a r<L> ) I rola.{ly ... 8 = Ea.tmn I ~ ~y ... 8 Un 
. m k'=O 

and satisfy the relations 

E~~>Y ... a ka. = £~7/Y ... a Ua. = 0; ~~~>Y ... a ka. = rol~~>Y ... a Ua. = 0. 

It is immediately seen from (21) that the tensors 
N<L> describe electric 2L pole radiation and the 
tensors M<L> magnetic 2L pole radiation. The 
terms proportional to n in r do not contribute to 
the radiation by virtue of gauge invariance [ cf. (19)]. 

We note that the form factors a<L> and n<L> 
have the dimensions of eRL, where e is the charge 
and R a characteristic invariant length parameter. 
The wavelength approximation in the system where 
u = 0 corresponds to 

w = (-ku) < 11R<,llm. 

In this case 

a<L> = g~L> RL, n<L> =d~L> RL 

and only the first nonvanishing terms with the 
lowest L are retained in the sums (21). 

(22) 

If the inequality (22) is satisfied the radiation of 
the photon can be described by a semiclassical 
theory. In this case there is a unique connection 
between N<L> and M<L> and the matrix elements 
of the tensors of the electric and magnetic 2L 
moments. [tJ 

3. ELECTROMAGNETIC TRANSITIONS OF ELE
MENTARY PARTICLES 

The decay probability and the polarization para
meters for the photon and the recoil particle can be 
expressed in terms of the set of form factors a<L> 
and n<L>. In squaring the expansion (21) it is nat
ural to use formula (7). In the final expressions we 
obtain products of the type 

< "* )(L) < "* >*(L') <Jls, <Jls, m <Jls, <Jls, m' 

(23) 
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where p<s1> , and p<s2 > , are respectively elements 
m1m1 m2m2 

of the covariant density matrices of particles A 
and .B, and m 1 and m2 are the projections of the 
polarization four-vectors sl and 8.! on the four
dimensional vectors n1 and n{'a = T a{3n1 ( cf. Sec. 
1 ) . [ 9] 

The total emission probability per unit time does 
not contain terms corresponding to the interference 
of different multipoles: 

p = ~ (!- V2)'/•{2J (- ku)2L+1 (L + 1) (L -1)! 
(-p2u) L (2L+1)(2L-1)!! 2L-1 

X (G(L)')2 

" ( k 2L'+1 (L' + 1) (L' -1)! _1_ (D(L)) } . (24) +r;- u) (2L'+1)(2L'-1)!! 2L-1 

Here v is the velocity of particle A. 
Expressions for the angular distribution and the 

polarizations of the radiation and of the recoil par
ticle for a pure multipole (wave length approxima
tion) are given in the book of Akhiezer and Bere
stetskil. [B] If all form factors are taken into ac
count interference terms appear, which we shall 
not write down in view of their complexity. We in
dicate, however, the basic characteristics of the 
angular distribution and the polarization of the pho
ton. 

a) The angular distribution has the form dW 
= wk7>(ku)-2d51, where 

W = 1 + 2J ct2zP~J~ ... sna.nBnY ... ns, (25) 
l 

and n is given by (15), p<2 l > are the four-dimen
sional polarization moments of the particle A 

[ p<2 l >u = 0], and the coefficients a 2 l are ex
pressed in terms of products of the form factors 
o<L'> and n<L> and Racah coefficients. We see 
that the angular distribution of the radiation de
pends linearly on the even polarization moments 
alone, where 0 < l < s 1• 

b) The linear polarization of the photon also de
pends only on the even polarization moments, but 
in contrast to (25) 1 < l < s1 since it is always 
zero for the decay of a particle with spin s1 = 1/2. 

c) The circular polarization, on the other hand, 
depends only on the odd polarization moments and 
vanishes if the particle is unpolarized: 

(26) 

We give a summary of the polarization para
meters characterizing the decay ~0 - A0 + y, 
written in four-dimensional form. If Yl = 1, we have 
magnetic dipole radiation, and if Yl = - 1, electric 
dipole radiation. 

After a simple calculation we find ( Yl = ± 1): 

s: <A>= Ta.B SB (A)=- na. (S(J;) n), (27) 

8 1 = 8 3 = 0, 8 2 = (S(E) n), (28) 

where s(~) is the polarization four-vector of the 
~ 0 particle, S<A> is the polarization four-vector of 
the A 0 particle, E1, E3 are the parameters of the 
linear, and E2 of the circular polarization of the 
photon. 

The correlation between the circular polariza
tion of the photon and the polarization of the A0 

particle is given by 

(29) 

The correlation between S<A> and the linear polari
zation vector of the photon is given by [to] 

S~A) =- {S(E)- 2e' (e'S(E))}, 'I")= 1, 

S~A) =- {S(E)- 2e (eS(E))}, 'I") = -1 
(30) 

( e~ = Ea{3yok{3eyu0 ). The radiation in the transi
tion from ~ 0 to A 0 is independent of the polariza
tion of the ~0 particle and isotropic in the rest 
system of the ~0 particle. 

4. ELECTROMAGNETIC FORM FACTORS FOR 
~ ¢0 

For I< ¢ 0, the structure of the electromagne
tic vertex can be found on the basis of considera
tions completely analogous to the preceding ones 
(Sec. 2, cf. also [l]). As before, we shall start 
from the gauge invariance of the theory and from 
the representation (12). However, for ~ ¢ 0 we 
must, in contrast to (21), take into account the con
tribution of the longitudinal scalar term ana to 
[see (16)], where ( n = ( k + u ( ku ))/-./ k2 + (ku)2). 
The final expression for r can be written in the 
following form:* 

r,, = r~e)+ r~m)+ (u -k ~~ tH, 

r~e) = 2J v L: 1 C (L) ( -ku) ("J/ (k2 +(ku)2 )L-I G(L) (k2) 
L:>1 

{< ... ">(L) E<L> } 
X <rs, <rs, {ly ... & a.(h ... & ' 

1lThe electromagnetic vertex explicitly enters, e.g., in the 
matrix element for the scattering of electrons on nuclei (with 
m, '"' m2 , s 1 = S 2) or for the excitation of nuclei by electrons 
(m, f. m2). In the one-photon approximation 

T (2 )• r; ili2 r ;11\ •• ( + k k l 12->-1'2' = :n: k2 u PI 1 - P• - 2 , 

where p1 and p2 are the four-momenta of the particles A _and 
B, k, and k2 are the four-momenta of the electrons, and t{l,yi'/I, 
is the current density of the electron. 
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r~rn) = ~ VL'-:; t c (L') CVk2 + (ku)2 )L' D(L') (kZ) 
L'>-l 

# "* " \. (L') ~(L') } 
X {\.IPs, 1Ps,#~y ... s a.~y ... a ' 

"" " ( .c 2 k )z)L" p<L"l (k2) {< "* ", (L) y(L) }. H = .Ll C (L) V k + ( U , IPs, 1Ps1/(ly ... a ~Y ... s 
L">o (31) 

Here C ( L) is given by (17), and E<L) are the 
electric and ~<L) the magnetic multipoles related 
to the irreducible tensors T<L) by 

(L) 1 .. 1k2 + (k )2 a y<L) 
Ea(ly s = ,r r u a-k !ly ... s, ... r L (L + 1) a. 

<M(L) _ 1 (_a_ y<L) ) U k . (32) 
W<a.(ly ... s ~- v L (L + 1) ea.tmn akl {3y ••. s m n 

It is convenient to set u equal to ptfm1. 
We note that in the classical limit with q 

=-/ k2 + (ku)2 ~ 1/R the longitudinal scalar form 
factors coincide with the electric ones: p<L) ~ a<L>. 
L, L', and L" satisfy (20) in all sums. 

If A and B are the same particle, the term 
with L" = 0 in (31) is nonvanishing and kl > 0. 
Here L and L" take even and L' odd values, u 
- k (ku)/kl = ( p1 + P2) /2m, and the total number of 
form factors in (31) is equal to 3s + 1 for integer 
spin and to 3s + 1/2 for half-integer spin (see the 
table below). In the static limit (ku)2/~ =~/2m2 

<< 1 and the terms r <e> in (31) can be neglected. 
The number of form factors is then equal to 2s + 1. 

For a scalar particle ( s1 = s2 = 0) 

f = p(o) (k2) Pl :nP• . 

If s1 = s2 = 1/2, both the magnetic dipole and 
monopole terms are present in the sums (31). 

(33) 

In our formalism [ l/J'' = Tlf;, see (6)] we have for 
the proton 

fa.= ( Pr ;/2 t p(o) (kZ) ('J);\jJ,) 

(34) 

Usually r for nucleons is written in terms of Dirac 
spinors without us13 of the transformation (6): [1t] 

fa. = iF'(k2) ('J)2ya.\)J1) + iD'(k2) ('i12aa.kkk\)Jr). 

Here 

p(O) (k2) = F' (k2) vi~ r + 2mD' (k2) V'2z~ 1 ' 

D(l)W>=(D'+ :~)V1 ~ 1 (1- v~) (r=-(u,u2)). 

Evidently p<O> ( kl ) - e, n° >( kl) - eg/2m if 
k2 /m2 - 0, where e is the proton charge and g 

the gyromagnetic ratio including the normal and 
anomalous magnetic moments. 

5. STRUCTURE OF THE HAMILTONIAN FOR {3 

DECAY 

As is well known, the weak interaction Hamil
tonian is written as a product of two currents, the 
nuclear and the leptonic: [ 12] 

(35) 

where the matrix element for the {3 transition is [ 13] 

S = (2n)4 iH64 (p1 - p 2 - k1 - k2). (36) 

Here p1, P2• k1, and k2 are respectively the four
momenta of the decaying particle, the recoiling 
particle, the electron, and the antineutrino. 

In the rest system of the decaying particle the 
decay rate is equal to 

dw = (Z~)• I H 12 ;: (m,- £2- kro)2 ! krl 2 kro dQk dQ(k,k,)· 

(36a) 

In (36a), k = k1 + k.z is the total momentum of the 
electron and the antineutrino. If we are interested 
in the electron-neutrino correlation we must inte
grate (3 6a) OVer dQ k = 27T Sin 8 I d 8 I, Where 8 I iS 
the angle between k and the polarization vector of 
particle A. 

According to the universal weak interaction 
theory [ 12 ] 

Summing I H 12 over the polarizations of the elec
tron and the antineutrino, we obtain 

I H !2 - 0" { .(n) .(n)• ( k k ) + 2R ( .(n)k ) ( ·(n) k )'} 
- (kru) (k2u) ]~ ]{3 - 1 2 e ](3 113 ]a. n . 

(37) 

In the following we shall only be interested in 
the nuclear current. Using the method of the paral
lel transfer of the tensors of the little group (Sec. 
1 of the present paper and also [ 5J), we attempt to 
expand the nuclear current in terms of irreducible 
tensors of the group Lu ( u = p1/m1 ), thus effecting 
a relativistic classification of {3 decays by degrees 
of forbiddenness. 

The program of describing the {3 decay of an 
arbitrary system with the help of form factors has 
been proposed by Smorodinskil at the Conference 
on Nuclear Spectroscopy at Kharkov. [ 14] 

Let us write the current j<n) as the sum of two 
currents: the vector current V and the axial vector 
current A. The total momentum of the electron 
and the antineutrino plays in this case the role of 
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~ (Sec. 4 ). For {3 decay k is a time-like vector 
and the physical region of ~ is given by the in
equality 

(38) 

Let us separate out from V and A the transverse 
components yrO) and ArO) which satisfy the equali
ties v< 0>k =A <0>k = v< 0>u =A <O>u = 0 and write V 
and A in a form convenient for comparison with 
the electromagnetic vertex for PI = ~ (see below): 

V = y<o> + Pt ,+ P2 S + k s 
2mt Y k" + (ku) 2 ' 

A=A(O)+Pt.-f P•p+ k p. (39) 
:!.m1 y k• + (ku)• 

The terms proportional to ( p1 + P2 ) are orthogonal 
to k = p1 - P2 in the unphysical region PI = ~. S 
and s are scalars and P and p are pseudoscalars. 

The expansion of the four-vector v< 0> is com
pletely analogous to the expansion of the transverse 
part of the electromagnetic vertex in terms of elec
tric and magnetic multipoles. The scalars S and s 
are expanded in the same way as H in (31). 

Using the irreducible tensors TrL> of the little 
group and the relativistic multi poles (31), we can 
write the covariant expansion of V in the form 

Va = ~ V Li1 C(L)(-ku) 
L?-1 

x (Vk2 + (ku)2)L-1gif-> (k2){<cr::cr • .>&;> ... sE~~~ ... s} 

+ ~ ylL':; 1 C (L') <V k2 + (ku)2)L' d~L'J (k2) 

L';;?:-1 

s = lt~> (k2) <cr:: cp.,> <o> 

(40) 

+ ~ C (L) (V k2 + (ku)2)L f~Ll (k2) { (cp:~ C(ls,)b~~ .. s Tk;: .. s} l, 
L?-1 (41) 

(0) "* (0) s = [nv (k2) (cps, C(ls,) 

+ ~ C (L)(V k2 + (ku)2)Ln~LJ ( k2J { <cr:: cp.,>&;: .. sr&;: .. s} J. 
L~ ~~ 

It is clear that an expansion for A is obtained by 
interchanging the tensors and pseudotensors in (40) 
to (42). Taking into account that usually I A~ I 
~ A2, we relabel the form factors (40) to (42) some
what in order to make them more readily compar
able with the {3 decay matrix elements of the usual 
theory. [i 5] Thus 

A~o> = ~ (- i) VL' 1 1 C (L') df-1> (k 2) CVk2 + (ku)2l'-1 

L'?-1 

X "* !L) rol(L) 1 {(cps, C(ls,)~y ... 5 a0y ... SJ, (43) 

P =- i [fX> (k2Hcr::cr.J<o> + ~ C(L') [<;_'-1>(k2 ) 

L'~l 

(44) 

P =- i [n1o> (k2Hcr::cr.J<o> 

+ ~ C (L') nf-1> (k2) CJ/k2 + (ku)2/'-1 

L'>l 

"* iL') (L') ] 
X {{cps,C{ls,)j3y ... 5 T~y ... s} (45) 

[the dimensions of the quantities d<L>, f<L>, g<L>, 
and n < Ll are those of R < Ll]. 

As in Sec. 2, L and L' take only even or odd 
values depending on the relative parity of the par
ticles A and B. If no definite value can be as
signed to the relative parity there is not any longer 
any sense in writing V and A in terms of the ten
sors ( )<L> and pseudotensors (( ))<L>. The ex
pansion of the total nuclear current V + A is then 
given by formulas (40) to (42), where L and L' 
take all possible values within the limits (20). The 
total number of form factors is equal to 8s2 + 4 if 
s 2 < s 1 and to 8s + 1 if s 1 = s 2• In particular, the 
decay A 0 - p + e- + z; is described by six form 
factors in complete accordance with [i4 ,ts], and the 
decay 1r0 - 1r+ + e- + 1i by two form factors. 

The dependence of the number of form factors 
of different type on the spin and the relative parity 
of the particles A and B is conveniently shown in 
the form of a table. 

We note that in first approximation in the coup
ling constant all form factors (40) to (45) are real 
(invariance under time reversal, see [i3] ). In the 
wavelength approximation q = ...J k2 + (ku)2 ~ 1/R 
the representation of the {3 decay current in the 
form of the sums (40) to (45) is nothing but the ex
pansion of the {3 decay current in terms of degrees 
Of forbiddenness (f< 0>,...., 1 f<L> ,...., RL d<O> ,...., 1 d<L> 

v ' v ' A ' A 
,...., RL etc.). 

We also give the formula for the electron-anti
neutrino correlation in the decay of a particle with 
arbitrary spin. Substituting (40) to (45) in (36a) and 
(3 7), taking account of (24), we obtain readily after 
summing over the polarizations of the recoiling 
particle and integrating over dQ k ( k = k1 + ~ ) 

X {c 1 + v cos 8) [4:rr I ( 1 + !2_) t(O) + ~ n(O) 1
2 

m2 I k I , 
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Number of form factors Total number 
electric magnetic longitudinal- not current of form 

factors s i type type scalar conserving 

v I A v I A v I A v I A /3-d I y -radia• ecay tion 

Integer 
s + 1 s + 1 s+t I 8s + 4 2s+l number I (s) s s (s) s + 1 s s (8s +2) (2s) 

-1 s s+ I •+ 1 s • s + 1 • •+ 1 
8s + 4 2s+l 

(s) (s) (8s +2) (2s] 
Half- 1 s + •;, s + •;, s + •;, s + '/, s + •;, s + •;, s + •;, s + •;, 8s +4 2s+l 

integer (s- '!,) (s- 1/s) (8s + 2) (2s) 
number -1 s + •;, s + •;, •+'/, s + •;, s + •;, s + •;, s + •;, s +'/, 8s + 4 2s +I 

(s-•;,) (s -'/,) (Ss+ 2) (2s) 

Note. The figure in parentheses is the number of form factors for As= 0 (As= Is,- s,l), 
if it is different from the number of form factors in the case As o;6 0 (s = s,, if s, < s; s = s,, 
if s1 < s2); f =(-!)As~. where 7J is the relative parity. 

ls,+s,j 

+ ~ I C (L) /2 1 k /2LI n<L> + 1~~ t<Lf 
L=ls1-s2 1 +1-

js,+s,l 

+ 2} I C (L) /21 g<L> /21 k /2L-2 (- ku)2 L + 1 
L=ls,-s,:+l. L 

l•·+s,l 

+ _2} /C(L)i2/d(L)/2Jk/2LL11]}· (46) 
L=ls.-s2:+A 

Here v = I k1 I /k10 is the velocity of the electron 
and (} is the angle between k1 and ~- The sum
mation in (46) goes over all values of L within the 
indicated limits, with A. = 0 if s1 ~ s2 and A. = 1 if 
s1 = s2• The form factors entering in (46) refer 
either to the vector or to the axial vector part of 
the nuclear current depending on L and the rela
tive intrinsic parity of particles A and B 

(f<o>___,t&o>, f}o>; n<o> --->nl?>, n'~>; t<L)-+ f~L>, f<}-1); 

n(L) ..... n~L), n<}-1); g<L) ..... g~L>, d(L-1)/(-ku)). 

As should be expected, the general formula for the 
electron-antineutrino correlation does not contain 
terms corresponding to the interference of V and 
A. 

The interference between V and A ( nonconser
vation of parity) gives rise to a linear dependence 
of the angular distribution of the leptons on the even 
as well as on the odd polarization moments of the 
decaying particle A, in contrast to the angular dis
tribution of the photons. 

If isotopic invariance holds the vector current 
is conserved when m1 = m2 • [ 14 •12 ] It is seen from 
(39) that for Pi = ~ the nonconserved current cor
responds to the term proportional to k. It follows 
from this that the form factors n<~> are of the 

order of ~RL in the region I~ I /m2 << 1, where 
~ is the degree of accuracy to which the isotopic 
spin is conserved [ 17] (for light nuclei ~ ~ 0.01, 
for nucleons ~ ~ 1 o-4 C 13]). 

It should be noted that the longitudinal scalar 
term in (39) is conserved in the nonphysical region 
Pi = ~. For time-like k (physical region) it is 
plainly not conserved, since p1 + P2 is also a time
like vector. 

In formula (39) we have replaced the four-vector 
u - k (ku)/~ [see (31)] which is always orthogonal 
to k, by p1 + P2• since the latter four-vector does 
not change, in contrast to the first, as we go from 
~ > 0 to ~ < 0 in the region I ~/m2 1 ~ 1 (there 
is no singularity on the light cone). 

This allows us to estimate the form factors of 
the weak vector current for small time-like k in 
analogy with the isotopic vector part of the elec
tromagnetic form factors for small space-like k. 
[ 12 ] If the particles A and B belong to the same 
isotopic multiplet we can easily obtain a simple 
relation between the form factors g<~>, d<~>, and 
fC~) and the corresponding electromagnetic form 
factors of the 2T + 1 particles belonging to the 
multiplet: 

f(L) (0) 
t(L) = 1 v --e-- etc., 

where d\L> [ f\L>] are determined by the system 
of 2T + 1 equations 

2T 

D(L)- .._.., d Tn 
(i) - ~ n 3(i) 

n=O 
(i= I, 2, ... ,2T+I) 

( e is the proton charge). In particular, for the 
decay 1r0 - 1T+ + e- + v ( T = 0) we have 

fil> = 1, n!7> ~ £, V = (p1 + p2)!2m [12,16]. 

The author expresses his deep gratitude to Ya. 
A. Smorodinski'l for his constant interest in this 
work, for comments and valuable advice. 
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Note added in proof (December 3, 1962). After this paper 
had been submitted to press, the authors became acquainted 
with a paper of Durand et al['•] in which the kinematic struc
ture of an arbitrary electromagnetic vertex for k2 ~·0 is studied 
by a different method. The results concerning the number of 
independent vertex functions are in complete agreement with 
Sec. 4 of our paper. 
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385 1. Eq. (24), last factor (D(L)) (D(L))2 

386 1. 3rd from bottom yr'-1 V r'-1 
2i" (I -1) 2i" 

387 r. 23rd from top } 
1(0 --+rt++e-+v n:--no+r+v 
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388 r. 7th from bottom o<L> 
(i) n<L> 
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