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A hydrodynamic theory of the motion of a localized exciton in a liquid is developed. From the 
microscopic point of view, a localized exciton is a specifically ordered region in the neighbor
hood of an electron-excited molecule which moves along with the excitation. In the hydrody
namic theory, a localized exciton is regarded as a small dense region in the liquid. Expressions 
are obtained in the hydrodynamic approximation for the effective mass and the friction coeffici
ent of a localized exciton in terms of the mean self-consistent force potential restraining the 
exciton. Estimates for the diffusion coefficient and the relaxation time of translational motion 
of the exciton are also obtained. 

1. INTRODUCTION 

THE participation of excitons in the processes of 
energy transfer in molecular crystals is today not 
subject to doubt. The situation should be similar 
in dielectric liquids. For example, there is every 
basis for supposing that excitons are responsible 
for the transfer of the energy of electron excitation 
in liquid scintillators. [t-3] As in crystals, we 
must assume here the existence of two forms of 
excitons-"localized" and "non-localized." [ 4] We 
shall be interested only in the former. If the life
time of an electron-excited state of the individual 
molecule is sufficiently long, then a realignment of 
near order takes place in its vicinity, brought about 
by the inevitable interaction between excited and 
normal molecules. The transfer of the excitation 
to a neighboring molecule brings about a corre
sponding motion of the entire specifically oriented 
region as well. Then one must imagine a process 
of continuous transfer of the electron excitation, 
accompanied all the time by a moving region of 
specifically ordered molecules (although the mole
cules themselves in this case do not undergo any 
transfer). It then appears that just as the motion 
in a crystal of the localized exciton is a transfer of 
the electron excitation, adiabatically accompanied 
by wave deformation of the lattice, so the motion in 
the liquid of the localized exciton is a transfer of 
the electron excitation adiabatically accompanied 
by wave ordering. 

The idea of localized excitons in liquids and 
their role in the process of energy transfer in 
liquid scintillators was first suggested by Proto
popov. [2 ,3] He proposed a model of "orientons"-

quasi-particles in the liquid corresponding to speci
fically oriented groups of molecules, which sur
round the excited molecule in the scintillation solu
tion and which are moved along with the excitation. 
Here the motion of the "orienton" presumes only 
the motion of the mode of mean orientation of the 
molecules, and not of the molecules themselves. 

A detailed theory of localized excitons in a 
liquid must be constructed on the microscopic level, 
which at the present time is extremely difficult, in 
view of the general state of liquid theory. However, 
if it is assumed that not too small a number of mole
cules take part in the process of formation of the 
exciton simultaneously (say several dozen mole
cules), then one can attempt to construct a hydro
dynamic theory of motion of the exciton, without 
studying in detail the molecular mechanism of the 
corresponding complicated processes. The present 
research is devoted to the hydrodynamic theory of 
motion of the localized exciton as a quasi-particle 
in the liquid. It will be shown that under a very 
small number of initial assumptions, such a theory 
makes it possible to determine the effective mass, 
the diffusion coefficient, and other kinetic charac
teristics of the exciton that are related to them. Ap
plication of the theory to processes in liquid scintil
lators will be given in a separate work. 

It is assumed below that all the necessary con
ditions that make possible formation of a localized 
exciton and a sufficiently long lifetime for it have 
been satisfied. The analysis of experimental data 
show that in many cases this actually occurs. [2 •3 J 
In this connection, the remark made in [2 •3] that 
the localized exciton in a certain sense is self-sus
taining is of great interest; that is, the compara-
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tively highly ordered vicinity of the excited mole
cule in a certain measure protects it from rapid 
extinction as a result of molecular collisions. 

2. THE QUIESCENT EXCITON 

From the hydrodynamic point of view, a qui
escent localized exciton must represent a small 
region inside the liquid, distinguished from the 
general background by its density. We assume 

? (r) = Po exp {- W (r)/!?T}, (1) 

where Po is the normal density of the liquid and 
~ ( r) is the mean self-consistent force potential 
preserving the existence of the exciton. The func
tion ~ ( r) must vanish rapidly upon increase in 
distance from the center of the exciton, and, more
over, one must assume I~( r)/kT I « 1 because of 
the small compressibility of real liquids, which 
makes large differences of p ( r) - p 0 impossible. 

One must assume the function ~( r) to be given 
in the hydrodynamic theory. For simplicity, we 
assume that ~( r) =~(I r I). However, in principle, 
this function could be computed by methods of sta
tistical physics from the (assumed) known forces 
of interaction of the excited molecule with the nor
mal one and between the normal molecules them
selves. Then ~(I r I) is the smoothed ( average) 
value of the true self-consistent potential (or local 
free energy) '11 ( r) of the excess forces acting on 
the normal molecule in the neighborhood of the ex
cited one, and which includes both the direct effect 
of the excited molecule on the normal one, and also 
the indirect effect which is transferred through the 
neighboring molecules. We shall not pause to con
sider this in further detail. We only note that the 
inequality I~ /kT I « 1 refers only to the function 
~, but not to '11. The latter may exceed kT at iso
lated points, which is necessary for stability of the 
exciton relative to thermal fluctuations. 

It follows from Eq. (1) that the force acting per 
unit mass on the liquid in the vicinity of the center 
of the exciton is equal to 

1 c2 -
K(r) = P Vp = -w V'l' (I r /), (2) 

where p is the pressure and c2 is the value of the 
derivative ( 8p/8p )T (the square of the isothermal 
sound velocity in the liquid). 

3. EFFECTIVE MASS OF THE LOCALIZED EX
CITON 

We consider the motion of the localized exciton 
in an ideal liquid. As a result of the motion the 
shape and structure of the exciton can change, and 

one must bring in corrections for the motion to 
Eqs. (1) and (2). We shall now write 

{ iV (I r il } p (r) = Po exp - -£y-- + a (r) 

and, correspondingly, 

(3) 

c• -
K (r) = - W \1'¥ (I r I) + c2'Va (r). (4) 

Furthermore, as always, we shall consider 
motion in the system of coordinates in which the 
center of the exciton is at rest, so that the flow of 
liquid is stationary and at infinity it is uniform with 
velocity U. The equation of continuity can then be 
written, with the aid of (3), in the form 

1 - ( div v = wv'V'l' (J r /) - v'Va (r), 5) 

while Euler's equation can be written in the form 

(v'V) v = - c2 'Va (r). (6) 

with the aid of (3) and (4). As boundary conditions, 
we shall require the absence of singularities in 
v ( r) and a ( r) everywhere and a rapid approach 
v- U and a- 0 as I r 1- 00 • 

In the case ;J; ( I r I) = 0, we would have identically 
v = U and a = 0 everywhere. Inasmuch as I~ /kT I 
is considered as a small quantity, then v and a 
will deviate little from their limiting values U and 
0. If we set v = U + v' and linearize Eqs. (5) and 
(6) in v' and a, then it is clear from Eq. (6) that 
the field of v' will be potential. We therefore write 

v = U + U'Vcp (r). (7) 

Furthermore, if we direct the Oz axis along the 
vector U, then the linearized equations of motion 
and continuity take the form 

u• acp 
lF az- + () = o, (8) 

• a•cp a•cp ( u• ) a2cp 1 a'¥ 
ax2 + ay2 + 1 - lF i)z2 = kT (}z . 

(9) 

For very rapid motions of the exciton, when 
U ~ c, Eqs. (8) and (9) contain "relativistic" effects 
of distortion of the field of velocities and of the 
structure of the exciton as a result of the motion. 
In the normal case, the ratio U/c is small. For 
example, if we take as U the mean thermal velocity 
of the molecules of the liquid, then this ratio is ap
proximately equal to the ratio of the velocity of 

sound in the corresponding gas to the velocity of 
sound in the liquid. For ordinary liquids, this ratio 
is of the order of 0.1, and one can neglect effects 
of the order of (U2/c2 ) ~ 0.01 in the effects occur
ring in our equations. Then, for slow motions of 
the exciton, it follows from Eq. (8) that a ::::; 0, i.e., 
the shape of the exciton is not changed in the motion, 
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and for the single remaining unknown function <p ( r) It can be shown that in the real case the value 
we get the equation of the effective mass of the localized exciton is of 

1 -, the order of a single molecule. 
~<p = kT "'¥ (r) cos 6, (10) 

where we have switched to spherical coordinates. 
As a boundary condition, we require the absence of 
singularities of rp over all states and the rapid 
vanishing of <p as r- oo, 

It is easy to prove that the solution satisfying 
these conditions is 

r 

( 0) -- cose \'1lf() ·-~dr. <p r, v - kTr2 .\ r (11) 
0 

The field of velocities of the flow of the liquid out
side and inside the exciton is then determined by 
Eqs. (7) and (11). 

We now return to the initial set of coordinates 
(in which the liquid is at rest at infinity) and com
pute the kinetic energy of the liquid flow. We have 

Ek =c 1/ 2 ~ p (v --- Uf dV = 1/ 2 p0 U2 ~ (V!p)2 dV, (12) 

where we have neglected small corrections associ
ated with the difference of p and Po in the last 
term. The coefficient for 1/2 U2 in this expression 
is obviously the effective mass of the localized ex
citon: 

Ek = 11zMeff,U2 , (13) 

M eff =Po~ {( ~;-Y + :2 ( ~: n dV, (14) 

where the function <p ( r, 8) must be taken from (11). 
To estimate the effective. mass, in accord with 

Eq. (14), we consider the very simple potential of 
the form 

r<R, 
r>R. 

(15) 

where R and E are constants with the dimensions 
of length and energy, respectively. We find from 
Eq. (11) that in this case 

q;> (r, 0) = 12;kT (3r2 - 4Rr) cos 0, 

ER 3 

<:p (r,8) =- iZkTr cos 0, 

r<R. 

r;>R, 

(16) 

(16') 

and further calculations from Eq. (14) leads to the 
effective mass equal to 

2:rr ( e )z R3 M eff = 15 ·kT Po • (17) 

Since the total mass of all particles in a sphere of 
radius R is M = 4rr p 0R3/3, we then obtain 

Meff = 113o (e/kT) 2 M < M, (18) 

in connection with the assumed smallness of the 
ratio E/kT. 

4. MOTION OF THE EXCITON IN A VISCOUS 
LIQUID 

We now take into account the viscosity of the 
liquid in which our localized exciton is moving. If 
we start out from the Navier-Stokes equation instead 
of the Euler equation, then, after simple substitutions, 
we get the following linearized equation for the slow 
motions, in place of Eqs. (8) and (9): 

u = L~<p. (19) 

( ' iJ<:p ) 1 iJllt 
~ 'P -t- L Tz =, fir Tz ' (20) 

where we discard terms of the order of ( U/ c )2 

and introduce a characteristic length L associated 
with viscosity and equal to 

u ( 4 J L= --.- --11-l-~. 
Poc.l3 ·~, 

(21) 

Here, YJ and !;; are the coefficients of shear and 
bulk viscosity. It is evident from (19) that now, be
cause of the viscosity, deformation of the excitons 
will take place even at small velocities. 

Equation (20) can be solved exactly. It is not 
difficult to prove that the correct exact solution 
will be 

z 

<p (x, y, z) = 1 \ e<u-z)/L<p" (x, y, u) du, (22) 
-00 

where rp 0 is the velocity potential of ideal flow, de
termined by Eq. (11). After a simple substitution 
of the variable of integration, we can also write 

00 

<p (x, y, z) = \ e-'cp0 (x, y, z - Lt) dT. (23) 
·' 0 

This form of writing the expression makes it easy 
to obtain the asymptotic series for <p in powers 
of L: 

00 

.._., n il"'l'o 
<:p (x, y, z) = .L.i (-L) -" • 

n~o iJz 
(24) 

Thus for vanishingly small viscosity, the resultant 
solution goes over continuously into the solution for 
the ideal liquid. For small but finite L, we get 
from (23) or (24) 

cp (x, y, z) = <p0 (x, y, z -- L). (25) 

Let us now compute the dissipation of energy of 
fluid flow as a result of the viscosity. From the 
general theory (see [ 5]) we have 
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Returning to the initial picture of motion of the ex
citon through a liquid that is motionless as a whole, 
we must interpret the result of (26) as the work per 
unit time of the friction force experienced by the 
exciton, equal to Ffr = - h (- U), where (- U) is 
the velocity of motion of the exciton itself, with a 
friction coefficient 

For slow motions and small viscosity, we can, 
in accord with (24), replace q; by q; 0 in (27); then 

h ~ ~ [ 21] ( a::~:k ) 2 + ( ~ - } 1]) ( Ll!Jlo? J dV. 
(28) 

If as an illustration we return again to the simple 
model of the exciton described by the potential (15), 
we find from (16) and (28) that 

(29) 

It is interesting to compare the resultant equa
tions with the Stokes formula 

In principle, the simplest such experiments would 
be those having as an aim the observation of the 
following three effects upon irradiation of the liquid: 
1) increase in density of the liquid, 2) change in the 
dielectric constant or of the index of refraction of 
the liquid, and 3) the appearance of additional light 
scattering. All three effects are easily calculated 
on the basis of the theory set forth above, but are 
shown to be very small for those real concentra
tions of excitons which can be obtained by experi
ment. 

More realistic is the indirect way of investiga
tion of those consequences which follow from the 
theory relative to the kinetics and concentration 
dependence of processes taking place in liquid 
scintillators. The further development of the theory 
of localized excitons along the line of radiolumines
cence, needed for this purpose, can be based en
tirely on the material given above. Thus a know
ledge of the effective mass and friction coefficient 
suffice for an estimate of the two most important 
kinetic characteristics of the excitons: [ 6] the re-

(30) laxation time of the translational motion 

where R* is the effective dimension of the exciton, 
regarded as a solid sphere. We see that in our 
case the friction is a result not only of the shear 
but also of the bulk viscosity, and that the effective 
collision radius of the exciton is very small. For 
our simple model, 

In the general case, when the ratio ( L/R), where 
R is a linear dimension of the region occupied by 
the exciton, is negligibly small, replacing Eq. (27) 
by (28) is invalid, and the friction coefficient de
pends on the velocity: h = h(U). For example, in 
this same simple model (15) -(16) using the first three 
terms of the asymptotic series (24), we get from 
the general equation (27) 

h(U) = ho{I + 1.54 TJ-:;;-~5\;0 \; (tr + .. .J. (32) 

where h0 is determined from Eq. (29). 
Actually, this dependence is clearly not very 

significant. For example, for benzene, using the 
tabular data for p 0, c, TJ and !; and setting R 
= 10-7 em, for the case in which U is equal to the 
mean velocity for normal temperatures, we obtain 
from (21) that ( L/R)2 ~ 0.1. 

5. CONCLUSION 

The possibility of setting up a direct experiment 
for discovering localized excitons in liquids in the 
sense used in this paper would be of great interest. 

't' = Merc/h 

and the diffusion coefficient 

D = kTjh = kT-rfMeff· 

(33) 

(34) 

The experimental investigation of these same 
characteristics can give us some indications rela
tive to the dimensions of the localized excitons, the 
depth and shape of the potential well described by 
the potential i! and so forth. 
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