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The magnetic-resonance line widths and longitudinal relaxation times for nonspherical liquid 
particles are calculated by the Kubo and Tomita method. The Brownian rotation of the par
ticles is characterized by the diffusion tensor Dij· The calculations are performed for quad
rupole and dipole interactions between nuclear spins, as well as for anisotropic g factors and 
hyperfine and Stark interaction constants in the case of electron spins. 

THE Brownian rotation of molecules in liquids 
determines the character of a wide range of pheno
mena: the width of vibrational lines of combination 
scattering and infrared absorption, the spectrum of 
Rayleigh scattering, depolarization of fluorescence 
radiation, magnetic relaxation, and so forth. In the 
theories of these phenomena one generally uses the 
hydrodynamic Stokes formula to determine the rate 
of Brownian rotation of the molecules: D = kT/81r77a3 

( D is the rotational diffusion constant, a the "ra
dius'' of the molecule, and 71 the viscosity of the 
liquid). Since this formula applies to spherical 
particles, the discrepancies observed between ex
perimental and calculated values of D are often 
attributed to a failure to take the shape of the mole
cule (almost always nonspherical) into account. 
Thus, so long as these theories do not take mole
cular shape into account, it will be difficult to solve 
the fundamental question of the applicability of hy
drodynamics to the analysis of the Brownian rota
tion of molecules. 

A number of calculations taking molecular shape 
into account have been performed by one of the 
present authors. [1 •2] In these the Brownian rota
tion was characterized by a rotational diffusion 
tensor Dij with principal values D1, ~. D3 • In 
particular, the probabilities of relaxation transi
tions between magnetic sublevels of nonspherical 
liquid particles were calculated. [ 1] 

Such probability calculations are necessary in 
the treatment of dynamic processes such as nuclear 
polarization and saturation; with their aid one can 
also find the relaxation time T1, solving the system 
of kinetic equations for the populations of the spin 
sublevels of energy. However, such a method for 

calculating T1 (and T2 ) is not always convenient. 
Therefore it is expedient to generalize the theory 
of [ 1] in the framework of the Kubo and Tomita 
method [3] of calculation; thereby one obtains at 
once expressions for the experimentally measured 
parameters T 1 and T2 • As a result the dependence 
of T1 and T2 on D1, ~. D3 is found. In addition, 
certain other types of interaction which were not 
considered in [ 1] are treated in the present. paper. 

1. According to Kubo and Tomita, [ 3] the half
width D.w112 = 1/T2 of a magnetic resonance line 
and the spin lattice relaxation time T 1 are deter
mined by the formulas 

(1) 

co 

T~il = Re ~ /"'il ~fail (T) dT, (2) 
0 

1i2a;llfail (T) = ({[1," Ji'~ (T)] [J{~il, f-a I}/ ( [ Ia [2), (3) 

fail (0) '= I; {AB} = ~/2 (AB + BA); 

(4) 

Formulas (1) through (4) are valid for Ez - Ek 
« kT and u T c < 1 ( E z and Ek are the energies of 
the magnetic sublevels of the particles; Tc is a 
parameter having the meaning of a correlation time 
of the perturbation JC' ( T); in our case T c ~ ( 1/6 D). 
The indicated inequalities are almost always ful
filled for liquids. The angular brackets in Eq. (3) 
signify averages over the spin and lattice variables 
with the density matrix of the system; we have 
Pspin = 1/(21 + 1 )NI(2S + 1 )NS, since Ez - Ek 
« kT. 
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2. In the case of quadrupole relaxation the per
turbation is the energy of the quadrupole moment 
of the nucleus being considered in the charge cloud 
of the molecule. The operator for this energy has 
the form [t] 

With the aid of Eqs. (11) and (12) we obtain 

a• = a2 = _!_a2 = ~a2 = 2a2 = .la2 1, -2 1, 1 3 l, -1 3 1, 0 0, ±1 2 o. ±2 (14) 

= :. n.-2 g!(eQ/ /(2/ -1))2 [/(!+I) -fl. 
We calculate the correlation function fa{3< T) of 

(5) the random quantities cp {3 ( T) by using the probabil
ity of a transition G (a, [3, y; T I a 0, {3°, y 0; 0) of the 
molecule from orientation a 0, {3°, y 0 at time t = 0 
to the orientation a, {3, y at time T : 

q0 =3·6-'1'P(3/;-J.(l+ 1)), 

IP;i = a2<p/ax;axi' P = eQ/l (2/- 1). 

(6) 

(7) 

(8) 

Here Q and f are the quadrupole moment and 
the spin of the nucleus, and cp ij is a component of 
the tensor of the gradient of the moleculer electric 
field intensity at the nucleus. 

The quantities cp {3 in (6) vary randomly during 
Brownian rotations of the molecule 

2 
~) . 

IPs = ~ Tsp (a (t), ~ (t), r (t)) <pp, (9) 
P=-2 

where T~~( a, {3, y) is an element of the matrix of 
order l corresponding to a rotation a, {3, y. [ll] 
Equation (9) is valid for the components of any ten
sor that transforms according to the l = 2 repre
sentation. Throughout the paper a ( t), {3 ( t), and 
y ( t) are the Eulerian angles between the axes of 
laboratory ( x, y, z; z II h0 ) and molecular ( ~. 1), 1;) 

systems, such that the ~. 1J• 1; axes are chosen 
along the principal axes of the diffusion tensor Dij. 
The ~. 1), 1; axes do not necessarily coincide with 
the principal axes of cp ij and other tensors to be 
considered in the following sections. 

Using Eq. (5), Eq. (3) can be written in the form 

• t ( ) _ < 1 {!/ "'' qiln r· > < r (jlil (0) r•> <(jl_il (tl (jlil (O)> (1o> 
0"'13 o;iJ 't' - 36n• < 11"' r•> <I (jl13 (0) r•> 

In calculating u~f3 in Eq. (10) we use the com
mutation relation [5] 

[/±1• q13] == V(2 =f ~) (2 ± ~ + I) qil±l> liz, qll] = ~q{l. (11) 

It is easy to find the mean values 

(12) 

g; = f ~ liP~ 12 = + l(IPaa- IP11,l + (<p1l1l- IP~1/ 
n=-2 

(13) 

fo:il ('t') = (<p_ll (T)IPp (0)) I< I IPI312> = f (T) 

= sk ~<p{l (aO, ~o. rO)<p_(3 (a, ~. r) G (a,~. r; T I ao, ~o. yo; 0) 

(15) 

The probability of the transition G ( T) is a solu
tion of the equation for the rotational diffusion of a 
particle [see Eqs. (5) to (10) in[1]]. 

Performing the integration in Eq. (15), and then 
in Eq. (2), we obtain 

1=-2 

Here 

n(s) 3 -2 ( 2 + 1 ( )2] 
•~±2 = 2 g"' IPa'fl 4 IPaa - IP1111 ' 

(18) 

Qi~h:o,o = fg;;;2 \ Y C±/ 4go (<p~a -<p1l1l) =f V3C=t=/ 4go 1Pttl2; 

(19) 

Dt1o = 3 (D + D 1), Dk~11 = 6D + 2g0 , D).~12 = 6D - 2go; 

D = T Du; C±= 2go ± 3 (D3-D) 

go= (D~ + D~ + D; -DP2 -D2D 3 -D3D 1)'1•. (20) 

The indices s and a differentiate quantities per
taining to molecules of the symmetrical ( D1 = ~ 
~ D3 ) and asymmetrical type. 

Substituting the known values of u~f3 ( 14) and 
T~f3 (17) into Eq. (1), we have 

1 1 (eQg"' )2 I (I+ 1)- 3/4 T. = 25 -n- 1• (Z/ _ t)• ~ Qt [p (Dkt, 0) 
1 

(21) 
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1 1 (eQg~) 2 I(I+1)- 3/4 [2 
T; = 25 -----,:;- 12 (21 _ 1)2 ~ Qt 3 P (Dkt. I) 

I 

+ ~ p (Dkt• 2) J. (22) 

The tensor components cp ij ( i, j = ~, T), !:; ) have 
been determined for a large number of molecules 
from quadrupole resonance spectra in crystals; 
these data have been collected in [s]. It can be as

sumed that these quantities do not undergo substan
tial changes in the transition from the solid to the 
liquid state. As a result, the unknown parameters 
in Eqs. (21) and (22) turn out to be the constants of 
the rotational diffusion of the molecule D1, ~. D3; 

the latter can be determined from a comparison of 
the theoretical and experimental values of T1 and 
T2 • It can also be noted that in molecular liquids 
having a quadrupole mechanism for relaxation, the 
contribution of the dipole mechanism (whether in
tra- or inter-molecular) becomes insignificant. 
(We have in mind dipole interaction between nuclear 
spins.) 

The number of measurements on nuclei posses
sing quadrupole moments is not large (see, e.g., C7J), 
even though existing spectrometers are capable of 
readily providing accurate information about mole
cular motion. 

3. We consider magnetic relaxation caused by 
intra-molecular spin-spin interactions. We begin 
with the general case, in which the nuclei in the 
molecule have different spins I and S with gyro
magnetic ratios Yr and YS· We shall be interested 
in the relaxation of spin I. We assume that the in
teraction between spins I and S is accomplished 
via dipole and contact forces; the contributions of 
these interactions to the relaxations can easily be 
shown to be additive. 

The operator for the energy of the dipole inter
action has the form 

m, n=-1 (23) 

(24) 

V1,-1 = 114 (Bfa)'/, I+S_, V-n,-m = (-l)n+mv:m· (25) 

where Yf ( eij• lPij) are spherical harmonics, and 
rij ( qj, Bij• lPij) is the vector joining nuclei i and 
j in the molecule. During molecular rotations the 
functions Y~ vary analogously to Eq. (9) 

where 8ij• lPtj are the angles of the vector rij in 
the molecular coordinate system. 

Besides the temporal dependence of JC' caused 
by molecular rotations [see Eq. (26)], the spin var
iable S in JC' ( T) can also be considered time de
pendent: S = S ( T), because the relaxation of spin S 
is independent of I. For example, nucleus j with . 
spin S can have an electric quadrupole moment, 
and spin S will relax by the mechanism described 
in the preceding section. 

To calculate relaxation times from Eqs. (1) to 
(3) we first calculate the statistical moments a~i3' 
keeping in mind that !3 signifies n, m in the ex
pansion (23): 

2 4 2 4 2 4 2 42 2 2 
(j100 = 3 (j101 = a (j10-1 = 3 (j1-10 = (j1-ll = 3 (j1-1-1 

4 2 4 2 2 2 4 2 21i2 S (S I) -6 = 3 Go-10 = Go1-1 = 3 Go-1-1 = 16 YiYi i i + ftj · 

(27) 

For the correlation function fij ( T) we have, anm 
instead of Eq. (3), 

ttl ( ) _ .d (1) ( ) f'l (2) ( ) _ <{S~ (T) S~m (0)}> <Y;k (T) Y: (0)> 
cxnm t' -!m t' t' - · 

<ISI,J2> <IY:J2> 
(28) 

The components ~m vary with characteristic times 
(of relaxation) T mj such that we can take 

f~<1> = (S~'(T)S~m(O))/(IS~I2) = exp(-ITI T;}). (29) 

The calculation of fij<2>( T) is carried out as in 
Sec. 2, since the dependence on molecular rotations 
is completely determined by Eq. (26), which is ana
logous to Eq. (9). Thus 

2 ti (2) (T) = ~ Q)ij) exp (-Dktl T [). (30) 
l=-2 

where the quantities ~ z are determined by the 
equalities 

(a) '1 '-1 2 
~Lo,5=t=o.s -='' (4n!l0) I Yz =F Y2 / • 

Qi~l=t=o,5 = ( 4n/ 1 0) I -v c± I 4g D (Y~2 + y; -2) 

~~ '0 2 =F r C=t=f2go Y2 I, 

(31) 

(32) 

and the Dkz are given in Eqs. (18) and (20). 
Substituting the values found above for a~nm 

(27) and fanm (T) [Eqs. (28) to (3)] into the general 
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formula (1), we obtain the final expression for the 
relaxation time of the i-th nucleus subjected to in
tramolecular dipole interaction with the j -th nu
cleus: 

T~1 (ij) = ~ Qt (ij) ~ a~. nm (ij, :r;,~+ Dkt)(T;ti + Dkz? 
1=-2 n,m=-l 

(33) 

It remains to consider the possibility, in the case 
of inequivalent nuclei, of relaxation of spin Ii via 
an interaction with the spin Sj of nucleus j of the 
type tiAij ( IiSj ), where Aij are coupling constants 
and the time variations of Sj are characterized by 
the correlation functions (2 9), as before. The con
tributions of this mechanism to T21 ( ij) and Ti1 ( ij) 
are easily obtained (see, e.g., [S]): 

(34) 

T~1 (ij) = 2/a Sj (Sj + 1) A~T2i (I + (w;- Wj) 2 r;J)-1 . 

(35) 

Equations (34) and (35) are for Aij < T~j; in the 
opposite case the interaction tiAij ( IiSj) causes 
structure in the spectrum of nucleus i. Although 
the constants Aij are not large (Aij ,:5 100 cps), 
the contributions (34) and (35) can be commensurate 
with (33), since it is frequently the case that T~j 
« DkZ· 

In the case of equivalent nuclei, when Ii = Ij, 
Yi = Yj· it is necessary to set T~j = 0; then T2 and 
T1 are easily obtained: 

1 
T "- (ij) 

1=-2 (3=-2 

where (see [S]) 

2 2 2 2 2 2 - J 2 -2 2 _2_ 2 
012 = Ort = 3 Ciu = 3 Ow - 2 Oo±2 - Cio±l -- 3 0 , 

and the U ij are given in (31) and (32). 
Nuclei of a single isotope, having the same gyro

magnetic ratio, but screened to different degrees 
from the electron cloud of the molecule and there
fore giving distinct, but close lines, can be consid
ered in our treatment as being equivalent, since the 
measurements of T1 and T2 are usually made by 
the spin-echo method, in which the sample is irrad
iated by a wide-band impulse. 

The successful application of the equations given 
in Sec. 3 to the analysis of measured values of T1 

for protons on the nonspherical molecules of ben
zene, naphthalene, and anthracene has been made by 
Agishev, [to] who also presents formulas for D1, ~. 
D3 obtained by hydrodynamic methods for viscous 
liquids and that pertain to molecules whose shape 
can be approximated by ellipsoids. 

4. We now consider the line width and relaxa
tion time of electron resonance in liquids. We be
gin with relaxation for a nonspherical paramagnetic 
particle in the case when the isotropic part of the 
Zeeman and hyperfine interactions of the particle 
bring about a resolved hyperfine structure ( hfs) 
of the line. The perturbation that widens the hfs 
lines is contributed by the anisotropic parts JC' of 
the Zeeman and hyperfine energies and the energy 
JC" of the Stark interaction [t J: 

1 

:J{' (t) ~= L s0(il:1 (t), So - Sz, s '1 = =-F (Sx ± iSy) /V:T, 
0··--1 

2 

:;{" (t) = L (- I )13 i'r:;, ;;c; ,= q0 (s) d_0 (t), 
{3--2 

q2 = q~2 = 2Si, q1 = q~l = V2 (SoSl + S1So), 

q0 = 2 · 6-2(3S~- S (S + 1)). (39) 

The components of the zero-trace symmetrical 
tensors gn, an, and dn are determined in the same 
way as in (6), replacing the ~ij respectively by 
gij• aij• and 1/2dij· Because of the Brownian rota
tion of the molecules the tensor components in (38) 

and (39), written in the laboratory system of coordi
nates, depend on time, and this dependence can be 
expressed in a manner analogous to (9). 

By a direct application of (3), it can be shown 
that the contributions JC' and JC" to the line width 
and relaxation are additive; hence they can be 
treated separately in the calculation. The statisti
cal moments are easily found: 

'2 '2 2 li -2 { 1 2 ( ) + 7 f 2} 01, -1; m = O'o, ±1; m = i5 2 gp m 12 mga , (40) 

'2 2 ." -2 { 2 2 ( ) + l f 2} O't, o; m = 15 n 2 gp m ·2 mga , fm = I (I + 1) - m2 , 

"2 "2 3 "2 3 "2 . 3 "2 3 "2 
Ci1,0 = 01. -1 = 2 Cit, -2 = 2 01.1 = 2 Cio. ±1 = 8 Cio.±2 

=~IS(S+l) -~lg~. (41) 

The moments (40) correspond to the transition 
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M - 1, m - M, m, whereas the moments (41) are 
the same for all hfs components in the spectrum. 
The gp, ga, gd are determined as in (13) via the 
tensor components Pij(m) = f3hogij + maij• aij• and 
dij, respectively. 

For the correlation functions of the quantities 
JC' and i<:f' we obtain from Eq. (3) 

2 

' ' 'V (~. m) 
{a{l; m (T) = {{l; m (T) = ~ Ql exp (- Dktl T I), (42) 

z~-2 

Ql0 ' m) = (-{- g~ (m) Q~ + -} fmf!aQf) / ( + g~ (m) +-} fmg~), 

Q~'tl. m) = H- g~ <m> Qf + d- tmg~Qn 1 ( + g~ <m> + d- tmg~). 
(42') 

t:.fl;m(T) = f" (r) = h Qf exp (-Dkz!TI), (43) 
1=-2 

where the quantities fJ~, rJf, fJ 1 appearing in (42) 
and (43) are determined analogously to (18) or (19) 

via the tensor components Pij• aij• and dij• respec
tively. 

With the known u~{3;m and fa{3;m(T) of (40) to 
(43) the half-width of the line ~w112 and relaxation 
rate Tib are readily obtained according to Eq. (1): 

+ -f ( S (S + 1) - ~) g~ Qj 

X [p (Dkz, Wo.o) + -} p (Dkz, w10) + 4- p (Dkz, W-2,o>1} , 
(44) 

2 

r -1 4 ±-2 'V {[ i 2 + 7 2{ J n(-1,·· m) (D ) 
1m= 1511 ~ 2gP 12ga m ••z P kl, ffi-1. m 

l=-2 

+ 1- (S (S + 1) --f )Qf g~ [p (Dk!, w1,o) 

+4r (Dkz, w2.o)l}. (45) 

In the functions p ( dkz, w{3m) in (44) and (45) it 
is sufficient to retain only the electronic precession 
frequencies ws, since usually ws » al/n, so that 
Wf3m::::; f3ws. 

Hyperfine structure lines of particles with spin 
S = 1/2 are not broadened by the Stark interaction 
( dij = 0) and hence remain relatively narrow. As 
a result, the dependence of the hfs line width on 
the nuclear quantum number m [ 11 ] described by 
the initial terms of Eqs. (44) and (45) is clearly 
distinguished in the spectra of spin 1/2 particles. 
For particles with spin greater than 1/2 the princi-

pal contribution to the width is caused, as a rule, 
by the Stark interaction of the spin of the particle; 
hence the distinguishment just referred to may not 
be possible. 

Besides broadening caused by Brownian rotation 
of the particles, that caused by the interaction of 
the spin with internal vibrations of the particle 
(ionic complex, molecule) can be important. [ 12 ] 

This broadening, like the Stark broadening, is the 
same for all hfs components, and can produce the 
same width for the hfs lines also for spin 1/2 par
ticles. Which of the two indicated widening mech
anisms dominates in the case of particles with 
S > 1/2 can be decided on the basis of temperature 
measurements of electron resonance linewidths. 
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