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From the quantum equation for the density matrix, equations are derived which characterize 
the behavior of magnetization of a system with strong exchange interaction in the high-tem­
perature region ( T » Tc, where Tc is the Curie temperature). These equations differ from 
the phenomenological equations previously derived [t-s] by some additional terms that take into 
account the variation of the mean exchange-interaction energy during saturation. It is shown 
that in accordance with the experimental data [ 7J the shape of the resonance absorption line is 
of the Lorentz type and that its width at saturation depends weakly on the temperature. The 
equations predict a shift of the center of the absorption line and a change in its width with vari­
ation of the constant magnetic field. Because of the condition T » Tc the equations proposed 
can be employed only to describe magnetic resonance in systems with a sufficiently low Curie 
temperature (crystalline free radicals, some ferrites, antiferromagnetic substances, etc.). 

AT the present time, phenomenological equations 
given by various authors [ 1- 6] are used in the analy­
sis of the behavior of the magnetization of ferro­
magnetic substances. In the majority of cases these 
equations are modifications of an equation first de­
rived by Landau and Lifshitz, [ 1] which is in good 
agreement with the experimental data in the low­
temperature region. All of these equations are 
equations only for the components of magnetization 
of the spin system. It has been subsequently shown, 
however, [ T-s] that it is necessary to take into ac­
count the variation of the mean exchange energy 
during saturation for a correct interpretation of 
the experimental data in the region T » T c. It is 
obvious that equations for the magnetization com­
ponents only cannot account for this variation. 

Our task is to obtain the magnetic resonance 
equations directly from the rigorous density matrix 
equation. In our case, this equation has the form 

1Wp(t)!at = -i !-nw0Sz + (fJ,H/2s) (S1/"'1 + s- 1e-i"'1) 

+ fi dip + flex. P (t) L 

(1) 

Here, Sx, Sy, Sz are the spin-component operators 
of the total spin, St1 = Sx ± iSy, si is the operator 

of a spin located on the i-th lattice site, rik is a 
vector connecting the i-th and k-th lattice sites, Jik 
is the exchange integral, w and H1 are the fre­
quency and amplitude of the alternating magnetic 
field, w0 = JJ. H0/ns, H0 is the constant magnetic 
field, and JJ. is the magnetic moment of the particle. 
The z axis is taken parallel to the constant mag­
netic field. We shall consider the case in which 
Hex » Hdip• liw0Sz. In the solution of Eq. (1) we 
shall use the method developed by one of the authors. 
[10,11] 

In order to clarify the nature of the processes 
which take place in the spin system under the in­
fluence of a high-frequency magnetic field, it will 
be convenient to transform to a rotating system of 
coordinates. This transition is accomplished by 
means of the transformation [ 12 •13] 

p (t) = exp (iwSz t) p'(t) exp ( -- iwSzt), (2) 

where p' (t) is the density matrix in the rotating 
coordinate system. Substituting Eq. (2) into Eq. (1), 
we obtain 

ar' (t) 1 at=- in 1 [nL'.Sz--:- ~tll 1Sx -+- flex+ v (t), r.o' (t)l, 

+2 
V (t) = '\ 1 ff'" i111wl 

L.J e . (3) 
m=-2 

Here, ~ = w - w0, Hm is the part of the dipole in­
teraction that causes transitions between the levels 
of the system with a change of m units in the z 
component of the total spin. 
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In order to determine the form of the density 
matrix, we now transform Eq. (3) into the interac­
tion representation 

p'(t) = exp (- if!trn) p"(t) exp (iHt!n), (4) 

where H =Hex+ J.i.S · Heff/s. Here Heff is the ef­
fective magnetic field in the rotating coordinate 
system, the z component of which equals - ( H0 

- D.w/ J.L ) , and the x component equals - H1• (The 
y component is zero.) For p" ( t) we obtain 

ap"(t)!dt = - in-1 [V' (t), p" (t)J, 

f:" (t) = exp (iHt/1i) V (t) exp (- iHt/1i). 
(5) 

We now make use of Zwanzig's method, [ 10 ,14] 

the essence of wh~ch is the application of the pro­
jection operator P. We separate the density matrix 
into two parts: 

p" = p~ + p:;, p~ = p (t) p", p; = (I - P ( t)) p". 

Here P ( t) is a projection operator that extracts 
from the density matrix p" that part which is diag­
onal in the representation in which Hex and the 
operator of the projection of the total spin on the 
instantaneous magnetization direction are simul­
taneously diagonal. Integrating Eq. (5) and then 
multiplying this equation on the left by P ( t) and 
1 - P ( t) respectively, we obtain 

l+o 

p~ (t + T) - p~ (t) = - ~ \ dt' p (t) [V' (t')' p; (t")], (6) 
i 

I 

P; (t) = -7d dt lV' (t'), P~ (t')l 
(l 

I 

-~ddt' (I- P (t)) [V' (t'), p; (t')J. (7) 

In Eq. (6) we have eliminated a term containing 
P ( t) [ V' ( t'), p'{ ( t' )], which vanishes because the 
diagonal matrix elements of the operator [ V' ( t' ) , 
p'{ ( t' )] vanish. For the same reason a similar 
term has been eliminated from the right side of 
Eq. (7). 

For the following discussion it is now convenient, 
having fixed the moment of time t, to direct the z 
axis along the instantaneous magnetization vector. 
In order to find a solution to the system (6) and (7), 
we assume that in the "instantaneous" coordinate 
system we have thus chosen the nondiagonal part 
of the density matrix is much less than the diagonal 
part, i.e., pfj « p'{. In this case, neglecting the 
second term on the right-hand side of Eq. (7), we 
obtain for pfj 

I 

P~ =- ~ ~ dt' tV' (t'), P~ (t')J. (8) 
0 

We note that in this expression p'{ ( t' ) is a slowly 
varying function of t'. 

The right-hand side of Eq. (8) is easily evaluated 
by direct calculation, just as was done in [!1]. The 
result is pf[ ~ p'{Hdip/Hex• which confirms the 
validity of the assumption pf[( t) « p'{ ( t) we made 
earlier. 

Regarding the diagonal part of the density ma­
trix p'{ ( t), it should obviously have the following 
property because of the homogeneity of the macro­
scopic system under consideration: 

p~ (t) = p~l (t) p~2 (t)' 

where p'{1(t) and p'{2(t) are the density matrices 
of any two arbitrary spin-systems resulting from 
the division of the system into two arbitrary macro­
scopic parts. But the most general form for the 
diagonal density matrix that possesses this prop­
erty is [ 15] 

p:(t) = Cexp [a(t)Sz+ f>(t)HexL (9) 

where C is a normalization constant. 
This form for the principal part of the density 

matrix is also easily understood on the basis of 
general physical principles. In fact, since the ex­
change interaction in our problem far exceeds all 
other interactions existing in the spin system con­
sidered, it is natural to assume that thermodynamic 
equilibrium will prevail at any instant in our sys­
tem during any relaxation process effected by the 
weak dipole interaction, owing to the strong ex­
change interaction, and the density matrix will in 
the general case have the form (9) accurately to 
terms of order Hdip/Hex· This situation is com­
pletely analogous to that which arises, for example, 
in the analysis of a vessel of gas that interacts 
weakly with the surrounding medium, resulting in 
its behavior being described at each moment of time 
by an equilibrium distribution function of the Holtz­
man type. 

If we now direct the z axis along the direction 
of the constant magnetic field, then the principal 
part of the density matrix will obviously take the 
form 

We return now to the rotating system of coordi­
nates, using the transformation (4). Applying this 
transformation to Eq. (8), we obtain 

I 

p~ (t) = - + ~ e-i!i(t-l');n [V (t'), p~ (t') 1 ili(t-l')ln dt'. (11) 
0 

It is not difficult to see that applying the trans­
formation (4) to p'{ ( t) does not alter its basic form 
and leads only to a change in the coefficients stand-



QUANTUM STATISTICAL THEORY OF MAGNETIC RE SON ANC E 353 

ing in front of the operators Sx, SY' and Sz. There­
fore, in order not to introduce new symbols we 
shall continue to write the principal part of the 
density matrix in the rotating system in the same 
form as pf(t): 

r~ (t) = c exp !a (t) sz + ~ (t) sx + r (t) s"u + e, (t) H,xl· 
(12) 

Considering that iJ.S • Heff « Hex• we can re­
place H by Hex in the exponents in Eq. (11). Keep­
ing in mind that Pi ( t) commutes with Hex• we re­
write Eq. (11) in the form 

t 

r~ {t) = - * ~ dt' !V" (t, t'), r~ (t')J, 
0 

"C"' (t' t') 

= exp {- iffex(i- t') I 1i) V (t') exp (iHex(t- t') I 1i). 

(13) 

Wenowcalculate aHex/at and aSx,y,z/at in 
the rotating coordinate system, using Eq. (3), (12), 
and (13). Consider, for example, a Hex/at. It is 
easy to see that the expression for a Hex/ at can be 
represented in the form 

t 

aH':t (I) =- ;2 ~ dt' Sp Hex [V (t) !V" (t, t'), p~ (t')]]. (14) 

In obtaining this relation we used the fact that 
[Hex• Pi (t)] = o and SpA [:Be 1 = Sp :B [ CA]. For 
the case T » Tc, we can replace the exponential 
in Eq. ~12) by 1 + a(t) Sz + {3 (t) flx + y (t) By 
+ 6 (t) Hex· Thus, the calculation of a Hex/at comes 
down to calculating integrals of the type 

t 

~dt' Sp Hex [V (f) [V" (f, t'), Szll· 

The calculation is accomplished in the same 
manner as in [ 10 •11]. We need only stop to consider 
the calculation of integrals of the type 

t 

\dt' Sp Hex (V {f) [V" (t, t'), Sx,y)). 
() 

A direct calculation shows that such terms are pro­
portional to eimwt, i.e., they are oscillating func­
tions of the time. The characteristic time for a 
dipole relaxation process is of the order n/Hdip· 
The frequency of the alternating magnetic field 
w ~ iJ.Ho/n, and since in the usual experiment H0 

» Hctip• we can neglect such rapidly oscillating 
terms. 

Finally, we obtain the following system of equa­
tions in the rotating frame, which describes the 
variation of Hex and Sx,y,z in the dipolar-dipolar 
relaxation process 

aSxlat = r [SHeff lx- SxiT2- Sy/T3 , 

aSu!at = r [SHeff lu- Su/T2 + SxiT3, 

aSzjat = r [SHefflz -·(Sz + Je)/T1, 
a;;e;at = -x (Sz + Je) / T1 • 

Here 

m=1,2 
m=+2 

r; 1 = :rc ~ Sp' .s-1 rff:, !if::;;:,, s+l Jl/1i2 Sp s~, 

+t) +co 

(15)* 

r;l = i P \ m:~ w' Sp' .s-1 !HZ:· rii::;:;,, s+l ll!1i2 Sp s;. 
m=-2 ~00 

(The symbol P before the integral over w' signi­
fies principal value.) The relation defining H~ 
is 

( ifj t), ( if{ t) dt e-;,t exp ~x Hm exp - --f- . 
-oo 

The primes on the Sp symbols indicate that in the 
summation of the diagonal elements, the singular 
factors 6 ( 0) contained in the diagonal matrix ele­
ments of H~H=~ (by virtue of the definition of 
H~) are omitted. [ 1o] 

Physically, it is clear that in the absence of 
dipole-dipole interaction the magnetization of the 
system in the rotating frame should precess freely 
around the effective field Heff· In our equations, 
a transition to the limit T1 = T2 = T3 = oo corre­
sponds to "turning off" the dipole-dipole interac­
tion. Then the system (15) takes the form 

as;at = r !SHeff I. 

But the solution of such a system of equations, as 
is well known, is a precession of the vector S about 
Heff• indicating that our system of equations (15) 
correctly contains the limiting case in which the 
dipole-dipole interaction may be neglected. 

However, besides this natural result, the system 
(15) leads to the following physically interesting 
fact. The equations can easily be rewritten in the 
form 

asx.u/ at= r [S, Heff + ~Hlx, y- Sx, u/T2, 
asz I at= r [S, H eff + ~H]z- (Sz + Je) I Tl, (16) 

a;;e ;at= -x(S, + Je)jT1. 

Here L\H is some increment to the effective field, 
more precisely an increment to the z component 
of this field, since L\H = L\Hz = 1/yT3• Thus we 

*[SH] = s X H. 
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see that the dipole-dipole interaction produces an 
apparent change in the magnitude of the constant 
external field or, in other words, a change in the 
value of the resonance frequency. 

To obtain the magnetic resonance equations it is 
necessary to add terms connected with spin-lattice 
interactions to the equations (15). Without these 
terms, Eqs. (15), as might be expected, yield zero 
solutions in the steady state, which means, physi­
cally, the heating of the system to an infinite tem­
perature on account of the absence of a dissipative 
process by which the energy of the external field 
can be transferred to the lattice. 

We take the spin-lattice relaxation into account 
in the usual manner, [ 3] i.e., we assume that the 
variation in Sx,y,z and JC due to this interaction 
can be written in the form 

(oSzlot) s-1 = (S~ - Sz (i)) I '1• 

(oSx, yiot) s-1 = - Sx. y (t) I T2 , 

(o;;tjot) s-1 = (J£0 - :Je (t)) I T0. 

Here S~ and JC0 are the initial values of Sz ( t) and 
JC (t); r 0, r 1, and r 2 are the corresponding spin­
lattice relaxation times. 

After the addition of the above terms to the 
right sides of Eqs. (15), we have 

oSx, y!Ot = y [SH~ff lx. y - (T;1 + ,;1 ) Sx. y, 

oSzlot = y [SH.eff lz- (Sz + :JC) I T1 + (S~- Sz) ITt> 

o:Jelot = -X (Sz + ::J£) I Tl + (:1£ 0 - ::J£) I 'o· (17) 

The prime on Heff means that the z component of 
the effective field contains the aforementioned in­
crement ~Heff,z = - 1/yT3• 

The system (17) can be simplified, if one con­
siders that r 1,2 » T1,2 , as was shown by Anderson 
[t 6] and by Skrotskil and Shmatov. [ 6] After this 
simplification the stationary solution of Eqs. (17) 
has the form 

Sx, st = yH1 (w- ulo. eft) T~S~!D, 

Sy, st =- yH1T2S~!D, 

Sz,st = [1 + (w -ffio,eff)2 T~] S~/D, 

::J£ st = ::;eo [ 1 - xy2 HiToT2/D], 

D = 1 + (w- wo. eff) 2 T~ + y2HiT1T 2 (1 + XT01T1). (18) 

Here wo,eff is the effective resonance frequency, 
and wo,eff = w0 + ~w0, where ~w0 = J..t~Hz/n 
=- 1/T3 • 

For a comparison of these results with experi­
mental data we turn to the work of Bloemberger 
and Wang, C7J in which the saturation of DPPH 
( diphenylpicrylhydrazyl) was measured. The 

measurements were made at 104 Me/sec ( H0 

= 3600 Oe) at 77 and 300° K. The Curie tempera­
ture of crystalline DPPH lies between 0.5 and 50° K, 
depending on the method of its preparation. The 
experimental data indicate that the shape of the 
absorption curve is Lorentzian, just as follows from 
our solution (18) 

In [T] it was also reported that the results of the 
measurement were independent of temperature. It 
is not difficult to verify that our solution under the 
conditions of this experiment leads to the very same 
result. In fact, the quantity Sz/S~ during resonance 
was measured in the experiment. From our solu­
tion (18) we have 

(Sz/ S~)res= [1 + y2HiT1T2 (1 + X'to /T1)r1 • (19) 

In this expression only the factor ( 1 + Kr0/T1 ) de­
pends on temperature. By means of a direct cal­
culation of the second moment T1 is found to have 
a value of the order 10-8 sec, which also agrees 
with the data of Bloembergen and Wang. C7J (Cal­
culation of the second and fourth moments shows 
that Ti1 ( w) and T21 ( w) can be represented by 
Gaussian functions with good accuracy. [l7,t8]) 

Values of To for these experimental conditions have 
been obtained theoretically by Griffiths, [ 8] who in 
particular showed that for T 1 "'" 5 x 1 o-s sec the 
quantity K r 0/T 1 is much less than unity under the 
conditions of Bloembergen and Wang's experiment. 
C7J Consequently, our expression (19) for Sz/S~ 
should not depend on temperature in this case, as 
indeed was observed experimentally. 

As we have already mentioned, our equations 
predict a shift in the resonance frequency w0; this 
was not observed in C7J. However, an estimate of 
~w0 shows that under the conditions of this experi­
ment the shift in resonance frequency is very small. 
In fact, it is easy to show, using our expressions 
for T3 ( w ), that ~w0 "'"~wJ..t H0/Hex• where ~w is 
the line width. Since H0 "'" 4 x 103 Oe and Hex/J..t 
"'" 105 Oe, then ~w0/ ~w « 1, which shows that the 
constant field used in the experiment was much too 
weak to produce any noticeable shift in resonance 
frequency. 

As we have indicated, our results are valid only 
in the region T » T c. In the region of lower tern­
peratures T ~ T c the appropriate equations for 

Sx,y,z and Hex have the same form as Eq. (14). 
However, increasing mathematical difficulties 
significantly complicate the solution, even though 
no new fundamental difficulties arise. 
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