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RECENTLY many authors [1- 5] solved numeric­
ally the equations of low-energy pion scattering. 
Among the solutions obtained by Serebryakov and 
Shirkov there are some with resonances in the 
A0-wave and in the A1-wave (waves with I= S = 0 
and I= S = 1, respectively). 

The resonance in the p-wave is completely due 
to the large A0-wave. In the absence of resonance 
in the A0-wave, there are no solutions with p-wave 
satisfying the threshold condition 

AI (v) lv=o = 0. 

For the width of the p-resonance there is an upper 
limit of 50 MeV, connected with saturation of the 
A0-wave. In many papers [2- 5], the Chew-Mandel­
stam equations were solved for the 7!"7!'-scattering 
s- and p-waves. To obtain resonance in the p­
waves, it is necessary to cut off in these equations 
the left-half unphysical cut. We note that the left cut 
is cut off either very far (A= 108 [ 4J), or else the 
left cut is replaced by a far pole v = -103 [5]. So­
lutions were obtained w~th resonance only in the 
p-wave, due to the "bootstrap" mechanism. We 
shall show that such a resonance is determined 
by the contributions of large singularities of the 
left cut. [5] 

Let us cut off the left cut in the Chew-Mandel­
stam equations 

oo A 
A- (v) = _!__ (' Im A; (v') dv' + _!__ \ ft (v') dv' 

' n .) v' - v n .\ v' + v + 1 ' 
0 0 

v 

ft(v)= v!t ~(1-2~!n[a,oimA0 (v') 
0 

+ a12 Im A2 (v') + 3 ( 1-2 ~~) ctt1 Im A1] dv'. 

We shall show that the solutions with coinciding 
resonances in the s- and p-waves satisfy the 
Chew-Mandelstam equation for a small cutoff 
parameter. 

We consider the o -approximation 

Im AI (v) = /.,na1 <'1 (v- v,), 

Im A2 (v) = 0. 

Here A.ai = r i• r i is the total resonance width, 
and vr is the position of the coinciding reso­
nances. Then 

f 1 ( V) = v ~ 1 ( 1 - 2 ~: 11) [ ~ ct0 + 3 ( 1 - v~ ) ct1 J . 

The threshold condition of the p-wave yields 

, '}.,-v, [ A+ 1 J 2v, (A+ 1)2 ct0 =3cti 1-61nv,+ 1 +3(4A+2-v,) . 

(1) 

We put a 0 = cp(A)a1; the function cp(A) is shown 
in Fig. 1. At not too large values of A, this is the 
condition for the correlation between the A0- and 
A1-waves, and consequently, confining ourselves 
to low-energy contributions, we find that resonance 
in the p-wave is due to resonance of the A0-wave. 
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FIG. 1 

For A > 40 (energy ""' 2 Be V ) the function cp (A) 
becomes negative and there is no wave correlation. 
The A0-wave satisfies the threshold condition in­
dependently of the A1 wave; the resonance is pro­
duced by the "bootstrap" mechanism; it is impos­
sible at low cut-off. When A = 10-15, condition 
(1) leads to an exact connection between a 0 and a1 
in Eqs. (3.8) of [1]: 

ct0 = 14ct1 • 

Combining the threshold conditions with the nor­
malization of the A0 wave: A0 ( 0 ) = 5A., 

[ 
2 '}.,- v, J 

cto I + 3 v, (A+ 1) (v, + 1) 

[ A-v,2+v, A+1l 
+ 6ctl 1 +A 1 +v, -2lnv, +1 c = 5v,, (2) 

we obtain the dependence of a 1 on A (see Fig. 2). 
For A= 10-15 we get a 1 = r tfA. = 2.14, r /A. 



FIG. 2 

= 0.34. The width r 1 of the p-wave differs then 
from the value of r introduced by Frazer and 
Fulco by a factor vr(r 1 = vrr ). This result co­
incides with the results of Serebryakov and Shirkov. 
It is seen from the curves that there exists a whole 
region of low cutoff (Aeff = 9-15 ), in which the 
Serebryakov-Shirkov solution with resonances in 
the A0 and A1 waves satisfies the Chew-Mandel­
stam equation. It is shown here that an account of 
the high-energy contributions (large A) changes 
radically the character of the solution. Apparently 
this limits the value of the cutoff of the left cut in 
the Chew-Mandelstam equation, if we wish to ob­
tain a closed-form description of the low-energy 
scattering. It is interesting to note that the value 
of the parameter A coincides with the value of 
the cutoff parameter of the Chew-Mandelstam 
equation, which guarantees convergence of the 
expansion of the amplitude in Legendre polyno­
mials. However, the question of the possibility of 
a closed-form description remains open. A prob­
able experimental check of this question involves 
the question of the maximum of the width of the 
p-wave resonance. 

Let us show how this maximum arises in the 
case of low cutoff. We consider the saturation of 
the A0 wave on a large interval, i.e., 

Im A0 (v) = 0, v >A; Im A1 (v) = :rtf1b (v,- v). 

Condition (1) goes over when A » 1 into 

.!:!._+ 3r1 [(4A+ 2-v,) (A-v,) _ 21n A+ 1 J 
v, v, A2 v, + 1 

- ____!_ (1 + ____!_ ln 4A) = 0. 
3n A 

(3) 

When A.= 10-15, we get rmax = 0.43, which cor­
responds to a bipion width of 43 MeV. No such 
maximum exists for large A. 

Thus, if we confine ourselves to the low-energy 
region in the Chew-Mandelstam equation without 
subtraction, assuming that the contribution of the 
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high-energy region is small, then the correspond­
ing solution coincides with the Serebryakov-Shirkov 
solution for low-energy scattering. 

In conclusion, I am deeply grateful to V. V. 
Serebryakov and D. V. Shirkov for formulating 
the problem and for continuous interest in it. 
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IT is well known that, beginning from a certain 
density, dielectrics necessarily become metals on 
compression (see the final paragraph of this 
letter). It is natural to expect, therefore, that 
metals would retain their metallic properties on 
compression. Up to now, as far as we know, no 
one has noted the fact that on compression a metal 
may be transformed into a dielectric within a cer­
tain range of densities. Our calculations suggest 
that this unusual behavior is exhibited by nickel. 
Calculations similar to those carried out by one 
of the present authors [i] indicate that, beginning 
from a density corresponding to the compression 
6 = 6.5, i.e., from a density of 60 g/cm3 (obtained 
at a pressure of 250 x 106 atm ), nickel becomes 
an insulator. 

The reason for this lies in the fact that an 
atom of nickel has 28 electrons, i.e., the number 


