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IN the papers of the author [ 1 •2] a method was de­
veloped for the computation of the matrix elements 
for a system of identical particles in those cases 
when all the properties of the system are deter­
mined by the coordinate wave function and central 
symmetry is present. Formulas were obtained ex­
pressing the matrix elements for an arbitrary many 
shell configuration in terms of one- or two-particle 
matrix elements and fractional parentage coeffici­
ents. In the expressions for these coefficients enter 
the matrix elements of the transformation matrices 
of the permutation and rotation groups. In this note 
it is reported that the transformation matrices of 
the permutation group, needed for the computation 
of matrix elements of two-shell configurations, have 
been tabulated for all possible symmetries of sys­
tems with a total number of particles from three to 
six. [ 3] The second part of the tables contains mat­
rices of the permutation group, which enter into the 
expressions for the matrix elements of the two-par­
ticle interaction operator G for systems in a field 
of arbitrary symmetry when the angular momentum 
is not conserved. 1) 

For the case of N particles in a field of arbitrary 
symmetry one may obtain in the Heitler-London ap­
proximation the following formula for the matrix 
elements of the operator G: 

N 

<P·l (t) I G I [A) (t)) = ~ ~ ([A) (r'A") I PW I [A] (t)) 
i</ A'r'A" 

( 1) 

(for notation see [ 1J). The Yamanouchi symbol t 
labels states corresponding to permutation sym­
metry [ 71.]. The number of physically different 
states, under the assumption that none of the single­
particle functions coincide, is equal to the dimension 
of the irreducible representation of the permutation 
group with the symmetry scheme [ 71.]: 21 

[A."]= [2) 

( 2) 

The permutations Pg> take the number N-1 into 
the i-th place and the number N into the j-th place 
with preservation of the increasing ordering of the 
numbers and are expressed by cycles as follows: 

P \2)_ {PNN-2 ... /-1/-2 ... iN-l N-a ... i N-j odd 
lf-

P NN-2 ... /P N-l N-a ... i-1 1-2 ... 1 N -j even 
(3) 

Tables of the matrix Plj> needed in computations 
using Eq. (1) have been prepared for systems with 
particle number N from 3 to 6. 

As a result, the usual tedious calculation of 
matrix elements reduces simply to the sum of two­
particle integrals with coefficients taken from the 
tables. C4J In writing the diagonal matrix element 
of the operator G each term of the corresponding 
column of the matrix p!~) should be taken squared, 
and in writing the off-d{~gonal matrix elements the 
product of the columns corresponding to the Yama­
nouchi symbols t and 1 should be taken. 

The existence of point symmetry allows one to 
lower the order of the secular equation. To this 
end it is necessary to form out of the functions with 
given permutation symmetry linear combinations 
that transform according to the irreducible repre­
sentations r of the point group that enter into the 
decomposition I 71.] - r. The procedure for finding 
such linear combinations is given in [S]. 

!)These tables will be sent on request from the L. Ya. Kar­
pov Physico-chemical Institute. 

2lWe note that for quantum chemistry one obtains a simple 
method for the determination of the number of so-called struc­
tures (see [•]). 
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RECENTLY many authors [1- 5] solved numeric­
ally the equations of low-energy pion scattering. 
Among the solutions obtained by Serebryakov and 
Shirkov there are some with resonances in the 
A0-wave and in the A1-wave (waves with I= S = 0 
and I= S = 1, respectively). 

The resonance in the p-wave is completely due 
to the large A0-wave. In the absence of resonance 
in the A0-wave, there are no solutions with p-wave 
satisfying the threshold condition 

AI (v) lv=o = 0. 

For the width of the p-resonance there is an upper 
limit of 50 MeV, connected with saturation of the 
A0-wave. In many papers [2- 5], the Chew-Mandel­
stam equations were solved for the 7!"7!'-scattering 
s- and p-waves. To obtain resonance in the p­
waves, it is necessary to cut off in these equations 
the left-half unphysical cut. We note that the left cut 
is cut off either very far (A= 108 [ 4J), or else the 
left cut is replaced by a far pole v = -103 [5]. So­
lutions were obtained w~th resonance only in the 
p-wave, due to the "bootstrap" mechanism. We 
shall show that such a resonance is determined 
by the contributions of large singularities of the 
left cut. [5] 

Let us cut off the left cut in the Chew-Mandel­
stam equations 

oo A 
A- (v) = _!__ (' Im A; (v') dv' + _!__ \ ft (v') dv' 

' n .) v' - v n .\ v' + v + 1 ' 
0 0 

v 

ft(v)= v!t ~(1-2~!n[a,oimA0 (v') 
0 

+ a12 Im A2 (v') + 3 ( 1-2 ~~) ctt1 Im A1] dv'. 

We shall show that the solutions with coinciding 
resonances in the s- and p-waves satisfy the 
Chew-Mandelstam equation for a small cutoff 
parameter. 

We consider the o -approximation 

Im AI (v) = /.,na1 <'1 (v- v,), 

Im A2 (v) = 0. 

Here A.ai = r i• r i is the total resonance width, 
and vr is the position of the coinciding reso­
nances. Then 

f 1 ( V) = v ~ 1 ( 1 - 2 ~: 11) [ ~ ct0 + 3 ( 1 - v~ ) ct1 J . 

The threshold condition of the p-wave yields 

, '}.,-v, [ A+ 1 J 2v, (A+ 1)2 ct0 =3cti 1-61nv,+ 1 +3(4A+2-v,) . 

(1) 

We put a 0 = cp(A)a1; the function cp(A) is shown 
in Fig. 1. At not too large values of A, this is the 
condition for the correlation between the A0- and 
A1-waves, and consequently, confining ourselves 
to low-energy contributions, we find that resonance 
in the p-wave is due to resonance of the A0-wave. 
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FIG. 1 

For A > 40 (energy ""' 2 Be V ) the function cp (A) 
becomes negative and there is no wave correlation. 
The A0-wave satisfies the threshold condition in­
dependently of the A1 wave; the resonance is pro­
duced by the "bootstrap" mechanism; it is impos­
sible at low cut-off. When A = 10-15, condition 
(1) leads to an exact connection between a 0 and a1 
in Eqs. (3.8) of [1]: 

ct0 = 14ct1 • 

Combining the threshold conditions with the nor­
malization of the A0 wave: A0 ( 0 ) = 5A., 

[ 
2 '}.,- v, J 

cto I + 3 v, (A+ 1) (v, + 1) 

[ A-v,2+v, A+1l 
+ 6ctl 1 +A 1 +v, -2lnv, +1 c = 5v,, (2) 

we obtain the dependence of a 1 on A (see Fig. 2). 
For A= 10-15 we get a 1 = r tfA. = 2.14, r /A. 


