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It is shown that spin-spin interaction via the phonon field leads to an antiferromagnetic state 
when magnetic dipole -dipole interactions are taken into account. A number of experimental 
facts are explained on the basis of this model. 

1. INTRODUCTION 

THERE is a large group of magnetic substances 
which, although they undergo phase transitions from 
a paramagnetic to a ferro- or anti-ferromagnetic 
state, have such small exchange interactions be­
tween the magnetic particles that it is difficult to 
explain the emergence of spin ordering. Thus, for 
example, in the well known experiments on the adia­
batic demagnetization of potassium-chrome and 
iron-ammonium alums (see, e.g., [l]) it was estab­
lished that at very low temperatures these salts 
made a transition to an antiferromagnetic state 
with transition temperatures of 0.004 and 0.03° K, 
respectively. The exchange interactions of the 
Cr3+ and Fe3+ ions in these crystals are evidently 
insignificant, and therefore it is usual to consider 
that the phase transition is caused in this case by 
magnetic dipole-dipole interactions. [2] However, 
the facts show that it is not so simple. In the ma­
jority of paramagnetic ions in a crystalline electric 
field of cubic symmetry the lowest energy level 
has only spin degeneracy. In a weak field of lower 
symmetry (usually axial, described by the Hamil­
tonian nst where s is the ionic spin), this degen­
eracy is removed down to the Kramers doublets. 
O'Brien [3] has shown, in a theoretical investiga-

remains an open one. Also unexplained is the great 
difference in the transition temperatures of the 
chromium and iron alums ( approximately 10 times). 
Besides, in many cases in which the spin ordering 
is attributed to indirect exchange, the calculations 
of this interaction are so complicated that many 
assumptions are made, decreasing the reliability of 
these calculations. 

Hence, it would be of interest to consider whether 
the magnetic ordering could be brought about by 
means of an interaction with the phonon field, which 
has been thoroughly studied recently in connection 
with the theory of superconductivity. The mecha­
nism of the interaction of the spins of paramagnetic 
ions via the phonon field is essentially different 
from that of conduction electrons. Estimates of the 
magnitude of this interaction were first made for 
the iron-group ions by Sugihara [G] and for the rare­
earth group in papers by Aminov, Morocha, and 
Khabibullin. [ 7J A general investigation of spin­
spin interaction via the phonon field was given by 
Aminov and the present author; [ 8] in the case for 
which retardation effects can be neglected, a pair­
interaction operator is obtained. 

2. THE INTERACTION HAMILTONIAN 

tion of the nature of the antiferromagnetism of In an attempt to make a direct application of the 
potassium-chrome alum, that dipole-dipole inter- operator of the spin-spin interaction given in [ 8], 

actions can lead to antiferromagnetism in the spe- it became immediately clear that no magnetic order-
cia! case when the Kramers doublet I± 3/2 > lies ing of the spins could arise. The reason is simple. 
lowest (sign of D negative). Apparently, the sign The most significant part of the interaction of the 
was identified with the sign of D of chromium- ionic spins with the phonons is electrical in nature; 
methylamine alums, which has been determined by hence, according to Kramers' theorem, states with 
paramagnetic resonance [ 4] (in the paper there is spin components m and - m have the same energy, 
a corresponding citation). However, in ammonium and consequently no magnetic ordering arises. This 
alums of chromium the sign of D is positive, [ 5] is expressed formally by saying that the matrix ele-
and the question of the sign of D and consequently ments of the spin interaction obey quadrupolar se-
of the nature of the antiferromagnetism in potassium-lection rules. This situation, however, changes 
chrome alums ( and likewise iron-ammonium alums) significantly in the presence of a magnetic field or 
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some anisotropy field of magnetic character. The 
magnetic dipole-dipole interaction can always play 
the role of such a field. Thus, the problem arises 
of obtaining the operator for the spin-spin interac­
tion via the phonon field, taking dipole-dipole inter­
actions into account. 

We shall write the Hamiltonian of two particles 
in a phonon field as follows: 

X [ <Q~k) (S}")mm' ((Qh•)nl'- (Sk")l'-n' + K. c.) 

+ <Qh·> (S~")nn' ((QZk)ml'- (S~·)I'-m' + K. c.)] 

+ (liw2 )2 (QZk) (Qh•) (S}")mm' <S!")nn•}a~maim'a;na2n'; 
qp 

(3) 

where q is the wave vector of a phonon, K is its 
:Je = .L; §f~r + :Jeph+ .J!t~~+ L; ;;e~-ph• (1) unit vector, Ap is the unit vector of the wave polari-

. i=l,2 io~1.2 zation, p is the number of the normal mode, v is 
where JC1r is the Hamiltonian of the j-th spin de- the speed of sound, p is the density of the crystal, 
scribing the splitting of the spin levels in the crystal- V is its volume, r 12 is the radius vector from spin 
line electric field, ~h is the Hamiltonian of the 1 to spin 2, and t. 11 = Ev -Em is the magnitude of 
phonon field, JCdd is the Hamiltonian of the magnetic the splitting of the energy levels. In addition, we 
dipole-dipole interactions ( we will write JC~d consider that ( Qik>mm' = 0 for m ¢ m' and de-
= PfkSISk; i, k = x, y, z ), and JC§_ph is the Hamil- note ( Qik>mm = ( Qiklm'm' by Qik· 
tonian of the spin-phonon interaction. We shall write down the result of the summation 

In the case S > 1/2, this last can be represented over q and p for an axial crystalline field and cubic 
by the formula environment for the paramagnetic ion. If t. 

(2) 

In Eq. (2) Qik = ( 1/2)(SiSk + SkSi), e is the ten­
sor of the lattice deformation, and G is a tensor of 
the fourth rank characterizing the magnitude of the 
spin-phonon interaction. 

It is easy to see that in the case of cubic sym­
metry of the surroundings of the paramagnetic ion 
the tensor can be defined by only two independent 
constants. [ 9•10] Neglecting retardation effects, 
which are insignificant in concentrated magnetic 
substances, [S] we obtain the interaction in the 
framework of perturbation theory. We shall as­
sume that the degeneracy in direction of the spins 
is removed by the electric field and the tempera­
ture is such that all the particles are in the states 
of the lower Kramers doublet (these states will be 
symbolized by the letters m, n, and the excited ones 
by J1., 11). Hence it is necessary to write the effec­
tive spin Hamiltonian of the interaction only for 
this doublet. 

To this end it is convenient to use the operator 
variant of perturbation theory for degenerate levels, 
as employed by Bogolyubov. [tt] Taking Jeer and 
JCph as the unperturbed Hamiltonian and transform­
ing to the representation of the second quantization, 
we obtain in third approximation 

mm'nn' 

~ nv/r12 (which is true for almost all the ions of 
the iron group) and D > 0, then the largest part 
of the Hamiltonian (which corresponds to the first 
sum in curly brackets in Eq. (3), since the second 
sum is small if the paramagnetic ions form a lat­
tice of high symmetry) has the form 

J1 =-%-AG!4 (2-3 cos2 t}), 

J2 = -tA ( ~: Gi1 + G!4) [S (S + 1) + +1 (1- 3cos2 t})2, 

A = g2~2 [S (S + 1) -fl2/n~pv2r~2 , (4) 

where a is the effective spin ( a = 1/2), a"' = ax 
± iay, J is the angle between r 12 and the axis of 
symmetry of the electric field (z), and 0 11 and 0 44 

are components of the tensor G in Voigt symbols 
(used in elasticity theory). We have not written 
out that part of the Hamiltonian which gives a con­
tribution to the average energy only in second order. 

If D < 0, the factor [S(S + 1)- 3/4]2 appear­
ing in J 1 in Eq. ( 4) must be replaced by S2( 28 - 1 )2 

and J 2 = 0 for S > 3/2. 
In case t. > nv/r12 , valid for the majority of 

rare-earth ions, we have for the principal part of 
the Hamiltonian (the lower doublet is I ± S > ) 

3~2S4 (2S -1)2 G2 

11 = 11 (1-3cos2 i})2 , 12 =0. (5) 
8lt2!ipv3r~2 

In the case of the rare-earth ions, we must replace 
the spin S by the total moment J. 

3. THE GROUND STATE 

Let us emphasize first that in all the cases con­
sidered for the majority of crystal structures 
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J 1 > 0, which means that the interactions considered 
here will evidently always lead to antiferromagnetic 
ordering. 

As an example of a substance containing iron­
group ions, we shall take potassium chrome alum. 
The elementary cell of the alum contains four non­
equivalent Cr3+ ions, the crystalline-field sym­
metry axes of which are directed along the cube 
diagonals. Transforming J 1 and J 2 to the cubic 
axes, we obtain that for the nearest neighbors in 
each sublattice J 2 = 0 and J 1 = 1/2 AG~4 • Hence, 
neglecting the action of the sublattices on each 
other and the direct effect of the dipole-dipole in­
teractions, we can compute the magnetization by 
the molecular field method. The calculation is 
trivial and shows that as the temperature is lowered 
each of the sublattices undergoes a phase transition 
to the antiferromagnetic state such that the spins 
(J of each of them are oriented along the body di­
agonals of the cube. The transition temperature is 
Tt = ( 9/2) J1. 

Tt=:Jl. 

Let us make a numerical estimate. The magni­
tude of G44 has been measured for Cr3+ in MgO, 
and equals 6.5 cm-1 • [ 12 ] In estimating a figure for 
alum, we take into account that the relaxation time 
of Cr3+ in MgO, where the relaxation is due to one­
phonon processes (and proportional to G-2 ), is 200 
times longer than in the alum; [ 13] thus we have 
G44 f'::; 100 cm-1 . Utilizing further the constants 
p = 2, v = 2 x 105 em/sec, r 12 = 1.2 x 10-7 em, 
S = 3/2, g = 2, and l:i = 0.3 cm-1, [ 14 ] we obtain 
T t f'::; 0. OOr K, which agrees with experiment in 
order of magnitude. In the case of the iron alum, 
S = 5/2 and l:i is 10 times smaller; this gives a 
value for T t that is an order of magnitude higher 
than that for the chrome alum, which agrees well 
with the experimental results. 

We now present an example from the rare-earth 
group. We estimate the transition temperature of 
metallic cerium with the close-packed cubic struc­
ture. The lower level of Ce3+ in a crystalline field 
(ground state 2F 512 ) is a doublet the wave functions 
of which are a mixture of the states I ± 3/2 > and 
I ± 5/2 >. Hence, Tt can be estimated as Tt ~ J 1, 

with the substitution S = 5/2 in Eq. (5). We esti­
mate the constant G from the following considera­
tions: since in the rare-earths the electric field 
acts directly on the total moment of the ion, we 
obtain the spin-phonon interaction by expanding the 
Coulomb interaction of the particles in a power 
series in the coordinates of the f-electrons and 
their relative displacements. Thu~ G f'::; aq2 ~/r~2 , 
where q is the charge on the ion, ~ is the mean 

square distance of the f-electrons from the nu­
cleus, and a is a transformation coefficient from 
electronic coordinates to spin operators [for Ce3+ 

we have a = - ( 2/35) [ 14] ]. Using the values 
q = 2. 5e ( e the electronic charge), ~ 
= 0.5 x 10-16 cm2 , r 12 = 3.6 x 10-8 em, and v = 4 
x 105 em/sec, we obtain a magnitude of a few de­
grees for Tt· The experimental value is 12° K. [ 15] 

The foregoing evidently permits the assertion 
that in a whole group of substances the antiferro­
magnetic transition is determined by spin-spin in­
teractions via the phonon field. 

The author is pleased to thankS. A. Al'tshuler 
and B. M. Kozyrev for a discussion of the results 
of the work and S. V. Tyablikov for a helpful con­
versation in which he pointed out, in particular, that 
the decomposition in terms of JCs-ph is not always 
possible in perturbation theory. 
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