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Curves showing the velocity dependence of the total scattering cross section for electrons 
on atoms at energies ~ 1 e V are plotted using the atomic polarizability and one constant, 
which can be determined either from one point of the a( E) curve, or from the binding en­
ergy of the negative ion. The temperature dependence of the mean collision frequency of 
the electrons in the gas is determined. 

IN the present work we have obtained curves show­
ing the dependence of the total scattering cross sec­
tion for slow ( E ~ 1 e V) electrons on atoms. In 
this energy region many atoms exhibit a nonmono­
tonic dependence of scattering cross section on en­
ergy ( Ramsauer effect ) . This effect has been 
treated by many authors on the basis of scattering 
on various potentials. 

We analyze scattering of the electron caused by 
the interaction, induced by the electron itself, with 
the field of the atomic dipole. This potential of the 
interaction is 

(1) 

where a is the polarizability in atomic units while 
a is the Bohr radius. This potential is effective 
outside the atom. The results of calculations of the 
interaction energy of a point charge with a hydro­
gen atom in the second perturbation-theory approx­
imation [1•2] differ from the potential in (1) by less 
than 25-35% even when r >:::: 2a. The notion of a 
potential and wave function for a single isolated 
electron does not have meaning inside the atom in 
our scattering problem. However, when E"' 1 eV 
the effect of the atom at small r can be taken into 
account in the boundary conditions imposed on the 
wave function at r - 0; that is to say, instead of 
assigning a potential inside the atom we specify the 
boundary condition. 

1. The Schrodinger equation for scattering on 
the potential described by (1) is 

(2) 

where cp ( r) = r R( r) and R( r) is the radial part 
of the wave function characterized by l = 0. Intro­
ducing the notation x = ra-114..j k/a , {32 = ka ..[(; 
we have 

1~. I. Chibisov contributed the calculations in Sec. 2b. 

cp" + ~2 (I + l/x4) cp = 0. 

When x » 1 we have cp =A sin ({3x + 60 ) (60 is 
the zeroth scattering phase). The higher phases 
can be neglected if U ( p) « n2k/ 2m where p 

(3) 

= .../ l ( l + 1) /k is the analog of the classical impact 
parameter. 

The condition that the contribution due to p­
scattering be small is {3 « /2 or E « 54/ a. 
This condition is especially stringent for atoms 
with high polarizability. Thus, in alkali metal 
vapors, in which a "' 100, we can only consider 
scattering at E "' 0.1 eV. For example, in cesium 
at E = 0.25 eV we find a= 326 x 10-16 cm2 [ 3] and 
~l ( 2Z + 1) sin2 oz = 1. 73; thus, when E = 0.25 eV 
we must at least include effects due to p-scatter­
ing. 

We now note that Eq. (3) is invariant under the 
substitution x = 1/ ~, cp = 1/J/ ~. Hence, when x « 1, 
~ » 1 

'ljJ = B sin (~£ + r), cp = Bx sin (~!x + r). (4) 

Know ledge of the constant y is equivalent to 
knowledge of the boundary condition at r - 0. In 
practice the solution of Eq. (4) for cp applies for 
(1.5-2)x0 < x < 0.7 or (1.5-2) r 0 < r < 0.7a 114 

.../ a/k where r 0 is the effective radius of the atom 
(x0 = r 0a-114 ..Jk/a ). This condition imposes the 
limitation 0.7.../a/k a 114 > (1.5-2) r 0 on the choice 
of atoms suitable for this analysis. The quantity y 
can be given if either one point of the Ramsauer 
curve or the binding energy of the negative ion is 
known. 

We now find the solutions of Eq. (3) for x > 1 
and x < 1. Treating {3 2 /x4 as a perturbation, as 
a first approximation we find: for x < 1 

00 

cp = Bx [sin ( ~ + r) + ~ ~ sin ~ (+-£)sin (~£ + r) ~~ ] , 
!/X 

(5) 

154 



SCATTERING OF SLOW ELECTRONS ON ATOMS 155 

or for x > 1 
co 

<p =A [sin (~x + 00) + ~~sin~ (x- x') sin (~x' + 00) ~~ J. 
X 

(6) 

If this approximation is to hold for x = 1 we must 
satisfy the condition 

00 

~\sin~ (1 - x) d.: < 1, 
,\ X 
1 

but 
00 00 

~ . dx 134 (' e-~~ ~· d~ 
~ J sm ~ ( 1 - x) 7 = 6 J 1 + £2 <; I, 

1 0 

and furthermore 

134 r e-~~ 9:rt 
6 .\ 1 + £• ;•d; < s~e-· = o.18 ~. 

0 

Thus, the error is determined primarily by the 
contribution due to p-scattering, which has been 
neglected, rather than the error in the approxima­
tion. 

Equating the logarithmic derivatives of the func­
tions in (5) and (6) at x = 1, after some simple 
transformations we have 

tg 00 = [A(~)+ tg y]/[B(~) tg r- IL (7)* 

The values of the functions A and B are as 
follows: 

13 = 0,2 0,4 
A= -25.33 -6,865 
B = -637,3 -45.47 

0,6 0.8 1.2 1.4 
-3.27 -1.91 -1.201 -0.748 -0.36 

-10.87 -4.29 -2.173 -1,225 -0.70 

When {3 < 0.2, the functions A and B are 

A = - 3/n~2 - 1.15 1~. 

To get more precise values for A and B when 
{3 ~ 1 we find their asymptotic forms, using the 
quasi-classical approximation; the validity of this 
approximation requires I Oi/p) ( dp/ dx) I « 1, where 
p = ti{3-J1 + 1/x4, i.e., {3 » 1. In this approxima­
tion the wave function is 

<p = (I + ~.('sin [~ ~ 1/ 1 + ~. dx. + c J. (8) 

When x « 1 the function in (8) must become cp 
= x sin ({3/x + y) and when x » 1 this function is 
rp=sin({3x+60 ); hence, o0 =-1.7{3-y+k7r and 

A = tg 1. 7 ~ for ~ > 1.8, 
B = -tg 1.7 ~ for ~ > 1.8. (9) 

We find the cross section from the expression 

*tg =tan. 

4:rt tg2 6o 
0 = 7i2" 1 + tg2 6o ' (10) 

The cross section found in this way applies for 
scattering on spherically symmetric atoms with 
spin zero. The total scattering cross section for 
spherically symmetric atoms of spin 1/2 is u 
(us + 3ua) where us is determined by means of 
the symmetrized wave function and ua by means 
of the antisymmetrized wave function. In general 
we must assign two constants, Ys and 'Ya. for this 
case. 

2. We now consider methods for determining 
y from certain characteristic quantities. 

A. When k- 0, we find from Eqs. (6) and (10) 

cr = 4:rta2a ctg r [ 1 - (0.51 + 2.10 tg r) ka VaL (11) * 
Thus 

ctg r = ± (2a)-l v cro/:rta ' (12) 

where u0 is the cross section for limitingly small 
energies. We note that the plus sign corresponds 
to a frequency shift toward the red transitions from 
higher levels of alkali metal atoms in foreign gases 
[ 4] while the minus sign corresponds to a shift to­
ward the violet. Equation (12) can be used to de­
termine y from the known quantity u0• From 
Eq. (11) we have 

drs I {+ oo tg j <- 0,242 
1E. E--.o = - oo tg j >- 0,242 · 

(13) 

The second possibility is realized in practice either 
in the case of very narrow resonance scattering or 
when tan y > 0, i.e., in atoms in which a Ramsauer 
effect is observed. 

B. We now consider the possibility of determin­
ing y from a given value of the discrete level of 
the electron-atom system. Physically y depends 
on the behavior of the electron inside the atom, 
and is independent of the behavior of the wave 
function outside the atom. The quantity y can 
thus be determined by considering the stable bound 
state of the electron with the atom. In this case 
we are given the behavior of the wave function for 
r - oo ( cp "' e -{31 r). For sufficiently small ( E 
~ 1 e V) binding energies of the negative ions the 
"extra" electron moves far from the atom and 
hence the Schrodinger equation for the wave func­
tion of this electron contains the potential in (1): 

<p"+ ~~(:. -l)<p =0, (14) 

where {3~ = -J 2aq ; rr = -fa x/{3; q is the binding 
energy of the negative ion in atomic units. 

To determine y numerically it is convenient to 
make the substitution x = 1/ ~, cp = 1/J/ ~; we thus 
obtain 

*ctg =cot. 
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'i'" +~~(I -In4) 'i' = 0. (15) 

The solution of this equation must satisfy the con­
ditions 

The values of y obtained in this way are approxi­
mated to an accuracy of 2% by the functions 

tg r =- ~i/(I + 0,29 ~ 1) for 0 < ~ 1 <I, 

A (~min) =- tg y, (17) 

where f3min is the value of {3 at which a = 0. It is 
thus evident that the Ramsauer effect is possible 
when tan y > 0. 

3. A know ledge of the energy dependence of the 
cross section can be used to find the mean fre­
quency of collisions of electrons in the gas. For 
this purpose we compute the quantities av, where 
the average is taken over a Maxwellian distribu­

r = 0.47-1.12 ~1 (16) tion: 

00 When {31 - 0 we obtain the familiar formula 
tan ooik-o = --./E/q = -{32/f3I· Equation (16) de­
termines Ys or Ya depending on the multiplicity 
of the discrete level of the negative ion. 

4VT ~ av = -""====-- a (Tx) xe-"dx, 
V2n:m 

(18) 
0 

Thus, y is expressed in terms of the binding 
energy of the negative ion; the cross sections for 
most atoms can be found this way. 

and we have introduced the variable x = E/T. The 
mean value av is approximated to within 10% by 
the function 

4cro [ YilT D (r) a.T J 
av = V2n:ma. (1 + c (r) a.T)' + (1 + C (r) a.T)'/, • 

(19) C. In the case of the Ramsauer effect tan y can 
be related to the value of the energy at which the 
cross section vanishes (neglecting p-scattering ). 
The cross section a= 0 when tan 60 = 0 i.e., when 

The functions C ( y ) and D ( y) are given below: 

tgr= -7 -5 -3 -2 -1.5 -1 -0.5 ±0.1 o.5 1 1.5 2 2,5 
C= 0.001 0.008 0.018 0.038 0.059 0.074 0.38 2.2 0.9 0.74 1.11 1.7 2.6 
D = 5.45 3.65 1.96 1.13 0.69 0,36 0.15 0 0 0 0 0 0 

The function in (19) is obtained by approximat­
ing a( E) for different values of y and carrying 
out the integration. When tan y > 0 (the Ramsauer 
case ) , a ( E ) is approximated only up to a = 0. 
Hence (19) applies for T < Emin where Emin is 
the energy at which a= 0. It is not meaningful to 
use the approximation when E > Emin because 
a ( E ) rises sharply when Em in < E ~ 15 e V. On 
the other hand, to carry out the integration in Eq. 
(18) with T > Emin we must know the behavior of 
a( E) up to E ~ 10 eV, where p-scattering be­
comes important. When tan y < 0 the approxima­
tion holds for E < 54/a, i.e., aT < 20. 

1 a0, to-u cm2 

I Present I (>] Gas 
work ref. 

Ar 
Kr 
Xe 

9 
36 

110 

Energy dependence of the scat-
tering cross section (in units of 
17a2); the solid curve is the theo­
retical curve and the dashed curve 
is the experimental curveJ3] 

7,1 
34 

11() 

2 

I 
4. We now consider several examples. The 

cross sections a0 have been determined for argon, 
krypton, and xenon for limitingly small energies 
starting with the values of Emin [3] (the polariza­
bility is taken from [5]). In the table we give val-

0 

' ' 

z 

' ' ' ' ' ' ' ' ' .... .... _ 

£, ev 

6 

ues of a0 computed on the basis of the theory given electrons in the negative hydrogen ion are in oppo­
here and values obtained from the shift of the higher ~ite directions the cross section is that for singlet 
levels of the atoms of alkali metals in these gasesPJ' scattering. 

In Fig. 1 we show the energy dependence of the As we have already indicated, the analysis in 
scattering cross section in helium. The original the alkali metals holds without considering p-scat-
data are a0 = 5.75 x 10-16 cm2 [ 3] and a= 1.33. [5] tering only if E"" 0.1 eV. The methods used here 

For atomic hydrogen, in which the binding en- can also be used to,obtain expressions for the 
ergy of the negative ion Ei = 0.75 eV and a=%. phases of the p-scattering; these will contain a 
using (16) we find the cross section for limitingly constant which, in general, is unrelated to the con-
small energies a0 = ll01ra2• Since the spins of the stant y. Thus, a determination of the total cross 
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section requires four constants (in the alkali 
metals us and ua must also be taken into account). 
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