
SOVIET PHYSICS JETP VOLUME 17, NUMBER 1 JULY, 1963 

ANGULAR DISTRIBUTION OF THREE PARTICLES PRODUCED NEAR THE THRESHOLD 

V. V. ANISOVICH and L. G. DAKHNO 

A. F. Ioffe Physico-technical Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor July 7, 1962 

J. Exptl. Theoret. Phys. (U.S.S.R.) 44, 198-202 (January, 1963) 

The amplitude for production of three particles near threshold is considered. The angular 
distribution of the produced particles is given to an accuracy of terms quadratic in the par­
ticle momenta in the final state. The angular distributions in the 1r + N -- N + 1r + 1r and 
K + N- N + K + 1r reactions are discussed. 

SEVERAL authors [1- 6] have considered the am­
plitude for the production of three particles near 
threshold with total orbital angular momentum 
L = 0. If the reaction is considered sufficiently 
close to the threshold, the amplitude can be ex­
panded in powers of the momenta relative to the 
motion of the produced particles. For the 1r + N 
-- N + 1r + 1r and y + N -- N + 1r + 1r reactions, the 
amplitude with L = 0 was calculated to an accuracy 
up to terms quadratic in the momenta [2, 3• 5], and 
for T decay the amplitude was calculated to an 
accuracy up to the third power. [1•4•6] In these 
papers it was shown that the experimental study 
of the foregoing reactions makes it possible to 
find the amplitude for pion scattering at zero en­
ergy. The first experimental data have recently 
been obtained. [7] 

If we are interested in the dependence of the 
cross section on the angles between the directions 
of the outgoing particles and particle momenta in 
the initial state, it is necessary to consider the 
production of particles in states with L > 0. The 
present work is devoted to this question. 

The amplitude for the production of three par­
ticles near threshold with total angular momentum 
L decreases with increasing L -the main term in 
the amplitude is of the order K L ( K is a quantity 
equal in order of magnitude to the c.m.s. momenta 
of the produced particles). Similarly to the case 
with L = 0, the amplitude for L > 0 can be ex­
panded close to threshold in powers of the mo­
menta of the produced particles. It then turns out 
that the main terms of the amplitude with angular 
momentum L (which are of the order K L) are 
expressed through L + 1 undetermined constants. 
But the subsequent corrections to this amplitude 
(of the order KL+t) are expressed through the 
same undetermined constants and through the scat­
tering amplitudes for different pairs of produced 

particles at zero energy. Hence the structure of 
the amplitude with L > 0 is similar to the ampli­
tude with L = 0 (see [1- 6]). By studying the ex­
perimental dependence of the cross section on the 
angles between the directions of the momenta in 
the initial and final states, we can also obtain in­
formation about the size of the scattering ampli­
tude for the produced particles at zero energy. 

In this article we consider the amplitude for 
the production of three particles with an accuracy 
to terms quadratic in the momenta. The amplitude 
with L = 0 has been considered earlier to such an 
accuracy. [2•3•4] Therefore we should consider 
amplitude terms up to the second power with L = 1 
and L = 2 (amplitudes with larger L are of higher 
order). 

The amplitude for the production of three par­
ticles (five-point function) depend on five inde­
pendent invariants. As such invariants we can 
choose, for example, the squares of the energy 
associated with the relative motion of pairs of 
particles in the final state s12• s13• S23 [ Sil 
= (" m~ + k~ + "mz + kf )2 - ( ki + kz )2, where mi 
and ki are the mass and momentum of the i-th 
particle in the c.m.s.] and two momentum trans­
fers t1 and t 2 [ ti = ( w- v' m~ + k~ )2 - ( P- ki )2, 
where w and P are the total energy and momen­
tum of one of the particles in the initial state]. 
The notation is explained in Fig. 1. 

Near the threshold for the production of three 
particles, the invariants Sil and ti can be ex­
panded in powers of the final-state particle mo-
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menta. Then Sil = (mi + m1 )2 + (mi + mz) 
x kiz /uil ( kil is the momentum of the relative 
motion of the i-th and 7-th particle, while Uil 
is their reduced mass), ti = w2 - P3 + mi- 2miw 
+ 2PkiZi = tio + 2PkiZi ( Zi is the cosine of the 
angle between the directions of the momenta P 
and ki ). 

Since the amplitude for the production of three 
particles near threshold is an analytic function of 
t1 and t2, it can be expanded in a series in t1 - t1o 
and t2- t20 : 

A (k 2k1ak2aZ1Z2) = Ao (k12k1ak23) + Aio (k12k1ak2a) k1Z1 

+ A o1(k12k1ak2a) k2Z2 + A 20 (k12k1ak2a) ki z~ 
+Au (k1ak1ak2a) k1k2Z1Z2 + Ao2 (k12k1ak2a) k~z~ + .. · 

(1) 
The functions A0, A10, Aoto ... , do not, in gen­

eral, vanish when the total energy of the three par­
ticles in the final state is equal to zero. In the 
c.m.s., the momenta of the produced particles lie 
in one plane, since k1 + k2 + k3 = 0. The position 
of this plane relative to the direction of the mo­
mentum of the particles in the initial state P is 
characterized by two angles J and q; which can, 
for example, be connected with z1 and z2 as 
follows: 

z1 =sin tt cos <p, z2 =sin tt cos (<p ~ y); (2) 

y is the angle between k1 and k2. Expanding 
A ( k12k12k23z 1 z2 ) in terms of Y LM ( J, q; ) , we 
obtain the amplitudes for the production of three 
particles with different total angular momenta L. 

We have to consider amplitudes with L = 1 and 
L = 2. The amplitude with L = 1 is determined to 
an accuracy up to quadratic terms by the terms 
A10( k12k13k23 )k1z; and A01 ( k12k23k13 )k2z2. The terms 
A2ok~z~, Auk1k2z1z 2 and A02k~z~ contribute to the 
amplitudes with L = 0 and L = 2. The terms of 
the expansion not written in (1) are of order greater 
than the second power of the momenta of the pro­
duced particles. 

We calculate the amplitude for production with 
L = 1 to an accuracy of terms quadratic in the mo­
menta. We first rewrite the terms in (1) of inter­
est to us in more symmetric form, where we make 
use of the fact that k1 + k2 + k3 = 0: 

(3) 

The values of A1, A2, and A3 in the zero-order 
approximation relative to the momenta of the pro­
duced particles will be denoted by a1o a 2, and a 3, 
respectively. The imaginary and real parts of the 
complex constants az are related by the unitarity 

condition [B] 

(4) 

where o is the scattering phase shift in the initial 
state at the threshold energy and Pl is an undeter­
mined real constant. 
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FIG. 2 

The corrections to A1, A2, and A3 proportional 
to kil are obtained from consideration of the dia­
grams shown in Fig. 2. [4] These corrections are 
calculated in the standard way from the dispersion 
relations for the relative momenta of pairs of par­
ticles. [ 5] For example, the correction from dia­
gram 2a to A1k1z1 + A2k2z2 + A3k3z 3 is 

(5) 

B12 ( k12 ) is the absorption part of diagram 2a cor­
responding to the real lines marked by crosses in 
the diagram. It is given by 

1 

B12 (k12) = ~ ~ (a1k~z~ + a2k~z~ + a3k3Z3) k12a12· (6) 
-1 

In place of the shaded region we have inserted ex­
pression (4); ki and k2 are the momenta of par­
ticles. 1 and 2 in the intermediate state, z is the 
cosine of the angle between the relative momentum 
of particles 1 and 2 in the intermediate state kh 
and the momentum P; zi and z2 are the cosines 
of the angles between momenta ki, k2, and P; a12 
is the scattering length for particles 1 and 2. 

Since in the c.m.s. 

k~ =- (m21(m1 + m2)]k3 - k~2. k~ 

=- [mrf(ml + m2)] ka + k~2. (7) 

the integration in the expression for the absorption 
part can be performed without difficulty: 

B12 (k12) = kaZaal2ki2 (aa- [m1/(m1 + m2)]a1 

- [m2/(ml + m2)l a2)· (8) 

Inserting (8) into the dispersion integral (5), we 
find that it is equal to iB12 ( k12 ) . The remaining 
corrections from diagrams 2b and 2c are calcu­
lated in a similar way. Hence the expression for 
A1k1z1 + A2k2z2 + A3k3z3 to an accuracy of terms 
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quadratic in the momenta of the particles in the 
final state has the form 

A1k1Z1 + A2k2Z2 + A3k3Z3 = 

kaZa [aa + ik12a12 (aa - rn+1 a1 - _!!!:__+• a2) J rn1 rn2 rn1 rn2 

+ k2Z 2 [a2 + ik12a13 (a. - _!!!:__+1 a1 - _!!!___+• a3)] rn1 rn3 m1 rn3 

+ k1z1 [a1 + ik23a2~ (a1 - _!!!:__+• a2 - _!!!:__+• aa)J. rn2 rn3 rn2 m3 
(9) 

We note that it follows from (4) and from the equal­
ity k1 + k2 + k3 = 0 that the part of the amplitude 
under consideration depends essentially only on 
two independent combinations of ait a 2, and a 3• 

In the zero-order approximation, Ait A2, and 
A3 are equal to a 1, a 2, and a 3, which are constants 
about which nothing had been known earlier (except 
that their imaginary and real parts are related to 
each other through the unitarity condition). These 
constants should be determined from experiment. 
But the first momentum corrections for Ait A2, 
and A3 are already expressed through the same 
constants ait a 2, and a 3 and through the paired 
scattering amplitudes at zero energy a12, a13, and 
a23. In this sense, the situation here is quite simi­
lar to the case of the amplitude with total orbital 
angular momentum L = 0. 

As we already mentioned, the amplitude still 
has terms that are quadratic in the momenta with 
L = 2. In the approximation considered, the am­
plitude with L = 2 is determined by three unde­
termined constants. However, since the depend­
ence on z1 and z 2 in this amplitude is different 
than in the amplitude with L = 1, they can be sep­
arated experimentally. 

We consider the angular distribution in the 
1r + N- N + 1r + 1r reactions. Here we will be in­
terested in terms proportional to zit z2, and z3. 
In the amplitude these terms can arise only from 
the initial states S1; 2 and D3;2. In the production 
of a meson on unpolarized nucleons the initial S1; 2 
state does not make any contribution to the cross 
section in terms linear in z1, z 2, and z3. In this 

case we can take az = ~Tf3zTei0T3, where OT3 
is the phase shift for meson-nucleon scattering 
in the D3;2 state with isospin T at threshold en­
ergies and f3ZT are real numbers. 

As can be proved with the aid of formula (9), 
the coefficients of k1z1, k2z2, and k3z3 in the zero­
order approximation for the cross section are pro­
portional to Re (A.* az ) (A. is the amplitude for the 
production of three particles with L = 0 for kil 

= 0 ). The amplitude A. is equal to ~TPTeian, 

where CI!Ti are the phase shifts for meson-nucleon 
scattering in the P 1;2 state at threshold energy and 
PT are real numbers. [2] As in the case of the 
phase shifts OT3, the phase shifts CI!Ti are small. 
Therefore the coefficients of k1z1> k2z 2, and k3z3 
in the zero-order approximation are proportional 
to cos (an - OT3) ..... 1. It is seen from (9) that 
in the cross section the first corrections to the 
coefficients of k1z1t k2z 2, and k3z3 (proportional 
to the first power of kil ) contain the quantity 
Im (A. *az ) ..... sin ( C1!T1 - OT3), which is small. 
Hence, in these corrections an additional small 
order of magnitude occurs and the corrections 
can be neglected in the approximation. This ad­
ditional small order of magnitude occurs, in par­
ticular, as a result of the smallness of the phase 
shifts CI!Tit which, generally speaking, is a chance 
effect. In other reactions, for example, K + N 
- N + K + 1r, the N +K phase shift in the P 1; 2 
state at threshold energy can turn out to be a 
large quantity. In this case the coefficients of 
k1z1> k2z2, and k3z 3 in the cross section will con­
tain terms linear in k12, k23 , and k13 ; after these 
coefficients are found experimentally, the scatter­
ing amplitudes for pairs of particles at zero en­
ergy can be determined. The formulas prove to 
be quite convenient, owing to the fact that in this 
reaction, as in the reaction 1r + N - N + 1r + 1r, 

the coefficients az can be considered to be real 
numbers. 
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