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The slowing down of a heavy positive singly-charged particle in a dense low-temperature 
plasma due to elastic collisions with electrons is investigated. The stopping power is cal­
culated by means of Green's functions and the diagram method for v « v0 (v is the velocity 
of the slowed-down particle and v0 is the electron velocity on the surface of the Fermi 
sphere). As in the Fermi-Teller case, the change in particle energy per unit time is pro­
portional to v 2• The possibility of applying the dense-plasma model to the calculation of the 
stopping power of a real metal is discussed. The calculated stopping power is compared with 
experimental data. The JJ.+ -meson slowing-down time in metals is estimated. 

l. The calculation of the stopping power of con­
densed media presents a complicated mathemati­
cal problem because the interactions of many 
bodies must be taken into account. Therefore a 
solid must be represented by several models, 
each of which distinguishes the most important 
interaction mechanism in some particular case. 

In studying the motion of positively charged 
particles in metals we make use of the fact that 
the particles are slowed down mainly by interact­
ing with electrons and that the electron spectrum 
is continuous. For this reason a metal can be 
represented suitably by a plasma model, in which 
electrons are considered free with uniform den­
sity equal to the mean electron density in the 
metal; the positive charge is smeared out uni­
formly in space. 

The properties of the plasma can be used to 
determine the stopping power on this model. How­
ever, the determination of these properties is a 
many-body problem which therefore encounters 
great mathematical difficulties in the general 
case. The problem is simplified when for the 
electron density we have n » 1 (using the atomic 

sion for the stopping power in terms of a two­
particle Green's function. Larkin's result can be 
used for a dense plasma when v « v0• 

2. Let us consider a proton (or p.+ meson) 
moving in a dense plasma with the a velocity v « v0• 

In this case a proton can form a bound state with 
electrons; this strongly affects the scattering 
mechanism. The bound state is a of single-particle 
character, going over into the hydrogen atom in 
the limit of low electron density and disappearing 
in the limit of high electron density. The question 
as to the existence of proton-electron binding in 
real metals cannot be answered by comparing the 
Bohr radius with the Debye-Hlickellength ( v'7T/ 4p0 ), 
since these are of the same order of magnitude. An 
answer is obtained from experimental studies of 
p.+ -meson spin precession in a transverse magnetic 
field, [3] which show that bound states do not exist 
in any of the investigated metals (Be, Mg, AI, Cu, 
etc ) . Consequently, a proton is slowed down as a 
result of elastic collisions with electrons. 

3. The slowing down of a negatively charged 
meson in a plasma has been studied by Fermi and 
Teller. [4] These authors showed that since the 

units n =mel= e 2 = 1 ). Green's functions can be energy loss of a particle colliding with an electron 
used to calculate the properties of a dense plasma is proportional to the particle velocity v and the 
by summing the most highly divergent perturba- number of electrons participating in collisions (the 
tion-theory diagrams. [i] It can be expected that electron layer at the Fermi surface) is ~ v, the 
the small parameter of the theory for calculating stopping power is ~ v2• In this calculation of the 
the stopping power will be ~ 1/np0, where Po is stopping power interactions between electrons were 
the electron momentum on the Fermi surface. neglected, and transitions due to interactions be-
Therefore the dense-plasma model is suitable tween a meson and a Fermi-surface electron were 
for ordinary metals even though in such cases considered. The screening effect of other electrons 
Po= 1.5-2.5. was taken into account in cutting off the derived 

The slowing down of particles in a plasma when divergent integral. This cutoff gives a coefficient 
the Born approximation (v » 1) is applicable has [ ( 2/37T) In Po] of v 2 that is valid for Po -- oo. 

been studied by Larkin, [2] who derived an expres- However, for values of Po corresponding to real 
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metals it is important to know the succeeding 
terms of the expansion, which assume values 
close to that of the logarithmic term. The Green's­
function method, which automatically takes screen­
ing into account, is therefore suitable. Since the 
collision time of a heavy particle with an electron 
in small-angle scattering is "'1/Vv; and the tran­
sition frequency is "'v /Vv;, it can be assumed 
that for v « v0 transitions result from two-par­
ticle (pair) interactions between the heavier par­
ticle and electrons. 

The probability amplitude for the transition of 
a particle from the state P 1 to P1 -q, while the 
medium makes a transition from state n to state 
m is given by 

[~v (Pv P- q-> P1- q, P) a;ap-q]nm' 
p 

which does not depend explicitly on time, so that 
the transition probability per unit time is 

Wq = 2n [ (~va;ap-qtJ 26 (Em- En+ ep,-q- ep.). 
p 

Here V is the probability amplitude for a transi­
tion from P 1 to P 1 -q in a collision with a free 
electron, which undergoes a transition from state 
p - q to p; a+ and a are the electron creation and 
annihilation operators; E and E are the energy of 
the medium and of the particle, respectively. 

Since the scattering amplitude in a Coulomb 
field is identical in the general case and in the 
Born approximation (Vq = 47r/q2 ), [ 5] Larkin's 
result [2] is obtained for the transition probability 
per unit time. (The two-particle character of the 
interaction is essential for agreement of the re­
sults.) By averaging over the initial states n and 
summing over the final states m of the medium 
it becomes possible to express the stopping power 
of the plasma in terms of a two-particle Green's 
function for electrons: [2] 

2V2 II W q I (q, OJ) 
q = 1-exp (-~OJ) m 1- Vqii (q, OJ). 

The term containing [ 1 - exp (- {3w ) ]-1, where 
T is the temperature and {3 = 1/kT, leads in the 
present case (where most of the stopping power 
comes from transitions with w » 1/{3) to the for­
biddenness of transitions with negative values of 
w = Ep1 - Ep1-q. This forbiddenness follows from 
the exclusion principle and energy conservation. 
II ( q, w ) characterizes the properties of the plasma 
and is represented by the accompanying diagrams 
where the conventional solid lines correspond to 
free-electron Green's functions and the dashed 
lines correspond to interactions between electrons, 

(\n 
0-0 
0 v,., p-j 

a b 0D 
c 

with 4-integration being performed over each ver­
tex from which a dashed line departs. We shall 
confine ourselves to diagram a, corresponding to 
the first term in the expansion for a dense plasma. 
Diagram b is calculated in the Appendix in order 
to provide a better understanding of the expansion 
parameter and of the accuracy with which the given 
model can be used for calculations. 

4. In calculating II<0>(q, w ), corresponding to 
diagram a, we use the relation v « v0, which 
means that an electron is scattered from an al­
most fixed center, resulting in a small angle be­
tween the vectors p and q (the scattered elec­
trons are close to the Fermi surface). We obtain 

r dp n (p + q /2) - n (p - q 1 2) 
TI (q, (i)) = ~ (2ll)" OJ- pq + ib [n (p + q /2)- n (p- q/2)] 

p2[ [u-11. J 
= - 2n2po 2 + u In I u + 1 + m I u I ' 

where p = Vp~-q2/4 and u = w/pq; the imaginary 
part disappears for u :::: 1. We note that the prin­
cipal contribution to the stopping power 

comes from transitions with u = vx/p « 1 ( x is 
the cosine between q and v ). Therefore 1m II 
« Re II and 

2Po 1 
dE (' \ q2dq dx 2 Im II 

- di = J J (2n)• vqx. 2Vq (1- VII) 2 

0 0 

where a = 1/ ( 1fPo - 1 ) . 
Expanding the last expression in the small pa­

rameter a, we obtain 

- - =- v In -- 3 + 3::t In --- ::t dE 2 2 { 4 4 11 } 
dt 3n a a 2 ' 

so that in the limit Po - oo our result agrees with 
that of Fermi and Teller. We note that the stopping 
power results mainly from transitions with small q, 
since a passing particle interacts with electrons at 
a distance equal to the screening radius. 
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.,Ag10' ,.Au"' I ,.AI" I ,.Cu"•' I ,Ti"•' I ,Ge"•' I 00Sn1"•' 

Po 2.16 2.59 1.42 
Aexp 0.30 0.28 0.23 
Atheor 0.24 0.2.5 0.21 

5. Our calculation based on the present model 
will be confined to diagram a, thus neglecting in­
teractions between electrons. The calculations in 
the Appendix show that the result is not appreciably 
changed when such interactions are taken into ac­
count for a plasma having the density of a real 
metal. However, the plasma model, although con­
venient because of its simplicity, does not take the 
complex structure of metals into account. The elec­
tron density at the Fermi surface is considered 
constant (equal to the mean electron density). The 
non-constant density of states near the ground state 
of the system leads to violation of the law dE/dT 
,...., v2. If electrons of many zones participate in 
transitions, a stopping power proportional to v2 

is obtained by averaging the effects of the differ­
ent electrons. 

The accompanying table compares the theoret­
ical and experimental values [SJ of the coefficients 
in the law -dE/ dt = Av2• The theoretical value of 
A depends only slightly on the particular metal; 
the agreement can be regarded as satisfactory. 

We shall now examine the validity of using the 
dense-plasma model for a metal in the present 
problem. The real-metal property used in this 
model is the electron density. It would be more 
accurate to refrain from using this mean property 
but to sum the values of the stopping power calcu­
lated at each point of space separately. However, 
when the electron density is almost constant at the 
screening radius (where we have the electron den­
sity n » 1) our present procedure is justified. 
This occurs in a region where the Thomas-Fermi 
model is valid. Here the motion of electrons can 
be regarded as semiclassical and their interac­
tions can be neglected; the paired interaction en­
ergy per electron is ,...., n113 and the kinetic energy 
of an electron is ,...., n213• Therefore the effective 
electron mass m* (m* = p(oE/op), p is the elec­
tron momentum, E is the electron energy) does 
not differ much from the real mass. However, a 
large region exists in which these conditions are 
violated and the effective mass differs greatly 
from the real mass; the energy loss is written 
more correctly as w = m *qv when it is much 
greater than the separation of adjacent levels. 
Strong interactions introduce great mathematical 

2.08 1.66 1. 73 1.90 
0.11 0.39 0.26 0.21 
0.23 0.22 0.21 0.22 

difficulties, and since m * must be the effective 
mass for regions contributing most of the stopping 
power the law dE/dt,...., v2 is violated. 

At velocities for which the law dE/dt,...., v2 is 
obeyed the dense-plasma model can therefore be 
used, because most of the stopping power of the 
plasma is associated with spatial regions where 
it is permissible to neglect interactions between 
electrons. At very low particle velocities the law 
- dE/dt = Acrv2 will again be obeyed; the coeffi­
cient Acr. which is smaller than A, depends on 
the properties of the crystal. 

6. The foregoing results can be used to study 
the behavior of f.J.+ mesons in metals. As long as 
the relation dE/dx » EJ..L/A.M is fulfilled a f.J.+ 

meson is slowed down by elastic collisions with 
electrons, and interactions with nuclei accompa­
nied by phonon excitation are insignificant. Here 
f.J. and M are the f.J.+ -meson and nuclear mass, 
A.,...., 1/an is the f.J.+ -meson mean free path (so that 
n is the density of nuclei), and G' is the cross 
section for the elastic scattering of a meson by 
an atom as determined from the Thomas-Fermi 
atomic model. For real metals the foregoing re­
lation is found to be well fulfilled in the energy 
region E ~ kT ( T ,...., 300°). The time required 
for f.J.+ -meson slowing down to thermal energy as 
calculated from the dense-plasma model is of the 
order ,...., 10- 13 sec and varies little from metal to 
metal. The fastest mechanism of f.J.+ -meson spin 
depolarization resulting from interactions with 
electron spin has T,...., 3 x 10- 11 sec. Thus when a 
f.J.+ meson is slowed down its spin is not depolar­
ized. 

In conclusion the author wishes to thank 0. B. 
Firsov and E. E. Sapershtein for discussions. 

APPENDIX 

To investigate the expansion parameter used in 
calculating the stopping power it is interesting to 
calculate rr<1>(q, w) for the case w/p0q « 1. rr<1> 
is given by the diagram b in the figure: 

(1) \ d4p d4k v ( q ) 
II = .l (2l't)4 (2l't)' kGo P- 2 
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where vk = 47T/(k2 + K2), K2 = -rr<0>(o, O), and 
the vectors p, q, k have the components p = (p, E), 
q = ( q, w ) , k = ( k, k4 ). Integrating with respect to 
dE/27T and dk4 /27r, we obtain 

rr<l) =\'!!E._~ n+-n-
J (2;t)3 (2n)3 w - pq + ib (n+- n ) 

n± = n(p ± q/2), n± = n(p + k ± q/2). 

We make use of the fact that one of the extreme 
vertices corresponds to the scattering of an elec­
tron by a heavy particle, so that the cosine of the 
angle between the vectors p + k and q is small; 
this is associated with the fact that electrons close 
to the surface of the Fermi sphere are scattered. 
We note that w « ( p + k )q, and obtain 

r ~v n+-n-
~(2n)3 k w-(p+k)q+ib 

_ \ ~ V P~1 (p + k) qb ( V (p + k)2 + q2 I 4- p0) 

- J (2n)a k w- (P + k) q + ib 

= _1_ {(p2 _ p2 _ rf_ + x2) 
Bnp~p o 4 

xtn[l+ (Vp~-::/ 4 +P)'J -(Vp~-q2 /4+PY}. 

A calculation yields rr<1> ~ rr<O> /27rp0. A correction 
of this order takes account of self-energy in rr<o>. 
We can therefore assume that the stopping power 
for the dense-plasma model is computed with a 
practically sufficient degree of accuracy ( ~ 1/7Tp0 ). 
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