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The analytic properties of the partial waves and of the scattering amplitude on the first 
"unphysical" sheet are investigated. A proof of the Mandelstam representation is given 
for each term of the expansion of the scattering amplitude in terms of a parameter. 

RECENTLY, many authors [i-5] have directed delstam representation exists and it is not neces-
their attention to the study of the analytic proper- sary to postulate its validity as in the relativistic 
ties of the scattering amplitude on the second sheet case. Moreover, a more complete study can be 
of its Riemann surface. Using the Mandelstam rep- made than in the relativistic case, since the uni­
resentation and the unitarity condition, one can con- tarity condition has a particularly simple form. 
tinue the scattering amplitude as a function of the In the first section we investigate the analytic 
energy on to the second sheet of its Riemann sur- properties of the partial waves on the first as well 
face (the first "unphysical" sheet) and study its as on the second sheet and show that complex poles 
analytic properties there. appear on the second sheet. In the second section 

The study of the analytic properties of the scat- the complete scattering amplitude on the second 
tering amplitude on the second Riemann sheet is sheet is discussed. It is shown that, besides the 
very important for the following reasons. It fol- complex poles, there exists an additional cut. This 
lows from the Mandelstam representation that the cut arises in the following way. On the first sheet, 
scattering amplitude has only real singularities the scattering amplitude is given as a sum of two 
(poles and cuts) on the first Riemann sheet. On analytic functions which coincide with its imaginary 
the other hand, the scattering amplitude must have and real parts for real positive values of the en-
complex poles corresponding to resonance states. ergy. The discontinuities of the imaginary and real 
It was conjectured by Peierls [i] that the complex parts along the additional cut cancel each other on 
poles of the scattering amplitude lie on the second the first sheet, but add on the second sheet. In the 
Riemann sheet. This idea of Peierls has been con- third section it is shown that each term of the ex-
firmed in many investigations. 

Peierls himself[!] discussed the scattering am­
plitude for a finite potential and showed how the 
poles corresponding to resonance states enter 
in the scattering amplitude. Gunson and Taylor, 
[ 2] Zimmermann, [ 3] Oehme, ['] and Goldberger 
and coworkers [s] investigated the partial waves 
and the complete scattering amplitude in quan­
tum field theory on the second sheet and proved 
the possibility of the existence of poles on this 
sheet. Besides poles, there are also additional 
cuts on the second sheet, and the dispersion 
relations on the second sheet have a form which 
differs from that of the dispersion relations on 
the first sheet. 

In this note, following the work of Zimmermann, 
[ 3] we investigate the scattering amplitude for a 
Yukawa-type potential as a function of energy on 
the second Riemann sheet. In this case the Man-

pansion of the scattering amplitude in terms of a 
parameter satisfies the Mandelstam representa­
tion. 

1. Let us consider a potential of the type 

(1) 

The scattering amplitude for potentials of this 
type has the spectral representation of Mandel­
starn [G-B] 

00 00 00 

(" p (t') (' \ dt' p (s', t') 
f (s, t) = j t' + t dt' + .\ ds' .\ (s' _ s) (t' + t) , (2) 

m 2 0 4m2+m"'/s' 

where s = kl = ki, t = (kf-ki) 2, kf is the momen­
tum after the scattering, and ki the momentum 
before the scattering. 

Using the unitarity condition 
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Im f (s, t) = r;~dQ'{*(s, (kt- k') 2) f (s, (k'- k;}2}, 

s > 0, k'2 = s 

and the expansion of the scattering amplitude 
f( s, t) = f ( s, cos e) in Legendre polynomials 

00 

f (s, cos e) = ~ (2l + 1) !1 (s) P1 (cos e), 
1=0 

cos e = 1 - t/2s 

(3) 

(4) 

( Pz is a Legendre polynomial ) , we obtain the fol­
lowing relation, which is basic for the following 
discussion: 

Im fz (s) = Vs I !1 {s) ]2, s>O. (5) 

We note that the representation (1) implies that 
the functions fz ( s ) are analytic in s in the com­
plex plane with the cuts 

Im s = 0, Res> 0, Res< -m2/4. (6) 

Let us focus our attention on the function fz ( s ) and 
investigate its analytic properties on the first "un­
physical" sheet. 

Using (5), it is easily shown, following Zimmer­
mann, [3] that the function fz ( s ) can be written in 
the form 

f1 (s) = F, (s) + i Vs 01 (s). (7) 

The functions Fz ( s ) and Gz ( s ) are analytic in the 
complex plane with the cut 

Im s = 0, Res< -m2!4, (8) 

except for poles. On the second Riemann sheet the 
function fz ( s) is given by the formula f~ 2 > ( s) 
= Fz( s)- i ..,IS Gz( s ), and is therefore analytic in 
the complex plane with the cuts (6), except for 
poles. It should be noted that in formula (7) the 
poles of Fz( s) and Gz( s) cancel mutually. 

2. Let us now study the scattering amplitude 
f( s, t) on the second Riemann sheet. The function 
f( s, t) can be written in the form 

f (s, t) = F (s, t) + i y:S G (s, t), 

where 

F (s, t) = ~ (2! + 1) Ft{s) P1 ( 1- ~s), 
1=0 

00 t 
G (s, t) = ~ (2! + 1) G1 (s) P1 (I - 25 ). 

1=0 

For real t in the interval -m2 < t::::: 0, the 
series defining F( s, t) and G( s, t) converge and 
the functions F ( s, t) and G ( s, t) are analytic in 

the complex plane with the cut (8), except for poles. 
On the second Riemann sheet the function f( s, t) 

is given by 

f( 2) (s, t) = F (s, t) - i y:S G (s, t) (9) 

and is analytic in the complex plane with the cuts 
(6) and the poles of the function G( s, t ). 

The function f(s, t), with -m2 < t, is analytic 
in s in the complex plane with the cut 

Im s = 0, Res> 0, (10) 

and for Im s = 0, Re s < 0, it is analytic and real. 
Since f(s, t) = F(s, t) + i..,IS G(s, t) and the 

functions F( s, t) and G( s, t) have on the cut (8) 
a discontinuity equal to twice their imaginary 
parts, Im f( s, t) may vanish on this cut if the 
conditions 

Im F (s, t) = - V- s Im G (s, t) or 

Im F (s, t) = Im G (s, t) = 0 

are fulfilled. 
Let us show now that it is the first possibility 

which corresponds to our case, i.e., that Im f( s, t) 
vanishes for Im s = 0, Re s ::::: -m2/4, because 
Im F(s, t) = -~ Im G(s, t). 

We obtain from (2) 
00 00 co 

F ( t) = (' _£Jt]_dt' + p ( ~ \ dt' P (s', t') 
s, j t' + t j s' - s j t' + t ' 

m 2 4m 2+m"fs' 
co 

y:S G (s, t) = n ~ 
4m'+m'fs 

dt' p (s, t') 
t' + t . (11) 

Since ..fS G(s, t), for -m2 < t::::: 0, is analytic 
in the complex plane with the cuts (6) except for 
poles, we can show that F ( s, t) is analytic in s 
in the complex plane with the cut (8) except for 
poles. The proof follows directly from (11), and 
we show that the imaginary part of F ( s, t) is 
equal to the imaginary part of -..r::B G( s, t) on 
the cut (8). 

Indeed, let us consider the function 
00 00 

F 1 (s, t) = I P (t') dt' + __!_ 1 ___!!i__ lls'G (s' t) - i vsa (s, t) 
j t' + t Jt J s' - s ' 

m' 0 (12) 

and show that 1) it coincides with F ( s, t) for s > 0, 
and 2) it is analytic in the complex plane with the 
cut (8). The first assertion is proved immediately 
by going to the limit of real s. Possible singulari­
ties of the function F 1 ( s, t) are the cuts (6) and 
poles. We show now that the function F1(s, t) only 
has the cut (8) and poles. 

Indeed, the discontinuity of F 1 ( s, t) for s > 0 
is equal to 
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lim (F1 (s + ie, t) - F1 (s- ie, t)) 
E-+0 

that hn fi ( s, t) is analytic in t in the complex 
plane with the cut hn t = 0, Ret~ -4m2 -m4/s. 

1 ~oo ds' , 17 ,r;; ,;- Indeed, let us substitute in (14) the expression 
=-:;:;-- P -,- v s' G (s', t) + i v sG (s, t) - i v sG (s, t) 

" . s - s 
o f <Fn(t', s) ' 

oo oo f n ( S, f) = .\ I' + t dt , 
+ ~ / !)t dt'- ! p ~ s' ~,5 Vs'G(s', t)+i VsG(s, t) m' 

(15) 

m' 0 

00 

- i VsG(s, t)- ~ 1~ !~ dt' = 0. (13) 
m• 

The discontinuity of F 1 ( s, t) for hn s = 0, Re s 
~ -m2/4 is equal to - 2-.r::8 hn G( s, t ), as fol­
lows from formula (12). 

Thus the discontinuities of the functions - i -IS x 
G ( s, t) and F ( s, t) are equal to one another for 
hn s = 0, Res ~ -m2/4. Using (9), we find that 
the discontinuity of f< 2>( s, t) on the cut (8) is non­
vanishing and equal to 

4 Im F (s, t) = - 4 y=s Im G (s, t). 

We see that the function f<2>( s, t) has a number 
of properties which are different from the proper­
ties of the function f(s, t). First, f<2>(s, t) can 
have poles in the complex plane, and second, 
f<2> ( s, t) has an additional cut (8) and hence an 
additional term in the dispersion relations on the 
"unphysical" sheet. [9] We note that this additional 
cut does not occur in the case of a finite potential, 
[ 1o] as is easily seen by letting m go to infinity. 

The region of analyticity of the function 
f< 2> ( s, cos e) in s and cos e can be determined 
by the method of Zimmermann. [a] 

3. In this section we show that all terms fn ( s, t) 
of the expansion of the scattering amplitude in 
terms of a parameter A., 

00 

f (s, t) = ~ /, nfn (s, t) 
tn=l 

have a double spectral representation, provided 
that they satisfy ordinary dispersion relations 
and 

00 

\' p (t') ' fl (s, t) = f1 (t) = .l t' + t dt . 
m' 

The proof is by induction. 
The unitarity condition (3) leads to 

lm /; (s, t) = r~ i~ ~ dQ'f;-n (s, (kt- k')2) fn (s, (k' - k;) 2), 

n=l 

s > 0. (14) 

If fn ( s, t) has a double spectral representation 
(2) for n = 1, ... , i- 1, then it follows from (14) 

where ffln ( t, s) is the discontinuity of fn ( s, t) 
(with s > 0) in t on the cut hn t = 0, Ret~ -m2• 

We obtain 
- i-1 co * , co , 

Im /; (s, t) = r; ~ ~ dQ' ~ <F;7 (s, / 1) dt~ ~ cp~,(s, t~) dt', 
n=1 m' 1 + 1 m' 2 + 

(16) 

where 

t1 = (kr- k') 2 , t2 = (k' - k;) 2 • 

Formula (16) can also be written in the form [i1J 

Im /; (s, t) 

X 9 (- K (cos cp, cos ljl, cos 0)) 

V- K (cos cp, cos ljl, cos 6) 

X 1 } dt' d( 
t~ I 2s + 1- cos cp t~ 1 2s + 1 - cos 1jJ 1 2 

where ®(x) is the unit step function and 

H (;, 'I'J, z) = _ :n: In z-~11+ VK(~. 1'], z) 
VK<e. I'J, z) z-~1']- VK(~. 1'], z) 

K (;, 1], z) = ;2 + '1']2 + z2- 2s'I']Z- 1. 

(17) 

The function H( ;, ry, z) is analytic in z in the com­
plex plane with the cut 

Im z = 0, Re z > S'I'J + Y(£2 - 1) ('1']2 - 1). (18) 

It is easily seen that the cut (18) is in our case de­
termined by 

Imcose =0, 

Recalling that cos e = 1 - t/2s, we find that 
hn fi ( s, t) is analytic in t in the complex plane 
with the cut 

Im t = 0, 

If hn fi(S, t) (with s > 0) is analytic in t in the 
eomplex plane with the cut hn t = 0, Re t ~ -4m2 

-m4/s, it follows from the ordinary dispersion 
relation in s that fi ( s, t) is analytic in s and t 
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in the two complex planes with the cuts 

Im s = 0, R.e s;;;;. 0, Im t = 0, 

Therefore, if f1 ( s, t ), ... , fi-1 ( s, t) have a 
Mandelstam representation, and fi ( s, t) obeys 
an ordinary dispersion relation, we can conclude 
on the basis of the unitarity relation that fi ( s, t) 
also has a Mandelstam representation. Since f1 ( t) 
has a Mandelstam representation by assumption, 
we find by this procedure that all fi ( s, t) do like­
wise. (For simplicity we disregard the fact that 
the fi ( s, t) have different cuts and choose the 
maximal cut. ) 

We have thus obtained the result of Bowcock 
and Martin [12 ] from the unitarity condition. 
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