DECAY OF NUCLEI WITH LESS THAN 126 NEUTRONS

B. N. BELYAEV, A. V. KALYAMIN, and A. N. MURIN

Submitted to JETP editor June 4, 1962

J. Exptl. Theoret. Phys. (U.S.S.R.) 44, 10-13 (January, 1963)

The ratio of the α -decay probability to the overall decay (α decay plus E capture) probability $\alpha/(\alpha + E)$ was measured for Po^{204} . The coefficients a and b in the linear dependence (1) for polonium isotopes with N < 126 were determined. The values of $\alpha/(\alpha + E)$ for $Po^{196,198,200}$ were estimated with the aid of this linear relation. The values of the reduced derivative widths δ^2_L , which characterize the probability of α -particle formation were calculated for these isotopes from the value of $T_{1/2}(\alpha)$. The hindrance coefficients for a number of α transitions were found for even-odd Po isotopes.

IN previously published studies [1,2] of Po²⁰⁴ the ratio $\alpha/(\alpha + E)$ of the probability of α decay with an α -particle energy $E_{\alpha} = 5.37$ MeV to the overall decay probability (α decay and E capture) was not measured directly. Karraker and Templeton [1] estimated this ratio to be $\sim 1\%$ and Latimer et al. obtained the value (0.63 ± 0.16)% by interpolation.

We carried out an experiment in which the ratio of the probabilities $\alpha/(\alpha + E)$ for Po²⁰⁴ was measured. To do this we compared the activity of Po^{204} , which undergoes α decay and E capture, with the corresponding activity of Po^{206} , for which the α -decay and E-capture rates are known $[\alpha/(\alpha + E) = (5 \pm 1)\%]$. The amount of Po²⁰⁴ nuclei undergoing α decay was measured relative to the α decay of Po²⁰⁶ by means of an ionization α spectrometer. The fraction of Po²⁰⁴ undergoing E capture was determined from the amount of Bi daughter nuclei separated chemically from Po. The Bi daughter-nucleus activity was measured with a 4π scintillation counter under the assumption that the Po²⁰⁴ decay via E capture proceeds through the following radioactive chain [3]:

$$\begin{array}{rcl} \operatorname{Po}^{204}(3,54\ \mathrm{h}) & \longrightarrow \operatorname{Bi}^{204}(12,5\ \mathrm{h}) & \stackrel{6\%}{\longrightarrow} \operatorname{Pb}^{204\,m} (68\ \mathrm{min}) \\ & & \downarrow^{94\%} \\ & & \text{stable} & \operatorname{Pb}^{204\,\swarrow} \end{array}$$

Here the Po^{204} yield in the Bi fraction was measured relative to the Po^{205} yield, while the Po^{205} yield was measured relative to the Po^{206} yield. It was then possible to determine the amount of nuclei undergoing E capture relative to the total amount of Po^{206} . A more detailed description of the experimental method can be found in ^[4].

On the basis of several runs, the value of the ratio $\alpha/(\alpha + E)$ for Po²⁰⁴ was found to be

 (0.645 ± 0.084) %. The error represents the rms error for the series of measurements and does not include the error in the ratio of $\alpha/(\alpha + E)$ for Po²⁰⁶.

Using the experimental data listed in Table I for even-even isotopes of Po^{204} and $Po^{200,202,206,208}$ (see ^[4-6]), we can plot the logarithm of the partial half-life for ground-state transitions as a function of $(Q_{eff})^{-1/2}$, where Q_{eff} is the total α -decay energy with allowance for the recoil-nucleus energy and the influence of the electron shell of the atom (see ^[7], p.156). This dependence can be represented in the linear form (see figure)

$$\log T_{1/2}(\alpha) = a/\sqrt{Q'_{eff}} + b.$$
(1)

The position of the line was determined by the method of least squares from the data for $Po^{202,204,206,208}$ for which the energy E_{α} and the value of $\alpha/(\alpha + E)$ have been more reliably determined.

If the partial half-life is measured in seconds and the total α -decay energy is measured in MeV, then the coefficients for the series of even-even isotopes of Po (N < 126) are: a = 150.36 and b = -57.746. It has been shown earlier (see [7], p. 141) that, for even-even isotopes of Po with N > 126, these coefficients have the values a = 129.35 and b = -49.9299. Hence the radioactive series of even-even isotopes of Po can be represented by linear dependences of type (1) with two sets of coefficients a and b. Here the isotopes with N < 126 usually have an anomalously low probability for α decay. The isotope Po²¹⁰ does not lie on the line, owing to the effect of the shell with N = 126 (see figure).

Using the dependence of log $T_{1/2}(\alpha)$ on Q, as determined by us we can calculate the values of $T_{1/2}(\alpha)$ for Po^{196,198,200} and, from the experi-

lass No., A	No. of neutrons	$E_{\alpha,}$ MeV	T _{1/2}	$\alpha/(\alpha+E), \%$	$\delta^{2}_{L=0}$
210 208 206 204 202 200 198 196	126 124 122 120 118 116 114 112	$5.299 \\ 5.108 \\ 5.218 \\ 5.370 \\ 5.575 \\ 5.86 \\ 5.935 \\ 6.14$	138.4 d 2.93 y 9.5 d 3.54 h 44.5 min $\sim 10 \text{ min}$ $\sim 1.9 \text{ min}$	$\begin{array}{c c} & 110 \\ \sim 100 \\ & 5 \\ 0.645 \\ 2 \\ \sim 5(16 \overset{+}{-3}) \\ (23 \overset{+}{-5}) \\ (80 \pm 20) \end{array}$	$\begin{array}{c} 0.027\\ 0.039\\ 0.055\\ 0.071\\ 0.078\\ 0.042\ (0.13)\\ - \ (0.25)\\ - \ (0.19) \end{array}$

Table I

N

Dependence of logarithm of partial half-life $T_{\frac{1}{2}}(\alpha)$ (in seconds) on total α -particle energy for Po with N < 126.

mentally known overall half-lives $T_{1/2}$, we can then determine the ratios $\alpha/(\alpha + E)$. The results of the calculations are shown in Table I in parentheses. The discrepancy between the experimental and calculated values of $\alpha/(\alpha + E)$ for Po^{200} can be ascribed to the experimental error which could occur in the case of an isotope with a short halflife and to the presence of α particles from Po^{199} with almost the same energy ($E_{\alpha} = 5.87 \text{ MeV}$)^[8].

Information on the partial half-life is of great interest from the viewpoint of α -decay theory, in particular, in connection with the determination of the probability for α -particle formation at the nuclear surface. The "reduced derivative width" δ_{L}^{2} , i.e., 2π times the " α width" in the absence of the potential barrier ^[7] is frequently used as a characteristic of the α -decay probability. The last column of Table I lists the values of δ_{L}^{2} obtained with the aid of previously reported data [4,5,7] and the results of the present experiment. The values of δ_{L}^{2} calculated with the aid of extrapolated values of $T_{1/2}(\alpha)$ are shown in parentheses. For the calculation we used the rectangular nuclear potential model and assumed that the α -particle angular momentum L was zero. The effective radius R was taken equal to 9.3×10^{-13} cm (see ^[7]). It is seen from the table that for even-even isotopes of Po with N < 126 the value of δ_L^2 displays a tendency to increase with the distance from the shell N = 126. Such a behavior has also been observed $\lceil 7 \rceil$ for even-even isotopes of Po with N > 126. The value of δ_{L}^{2} passes through a minimum in the region of the shell N = 126. Qualitatively, this behavior of δ_{L}^{2} is in good agreement with the predictions based on the shell model $\lceil 9 \rceil$.

For even-odd isotopes of Po with N < 126, we can calculate the forbiddenness coefficients F by means of the formula

$$\log F = \log T_{\frac{1}{2}}(\alpha) - (a/\sqrt{Q_{eff}} + b), \qquad (2)$$

where the coefficients a and b are the same as those in the previously found logarithmic dependence. The calculated values of F are listed in Table II. The values of E_{α} , $T_{1/2}$, and $\alpha/(\alpha + E)$ were taken from ^[4-6].

It is still difficult to draw general conclusions about the distribution of the hindrance coefficients, since experimental data on the level system for daughter nuclei and on the α -particle angular momenta for α transitions of Po are almost entirely lacking. It is seen from Table II that comparatively intense α transitions for even-odd nuclei in the case of Po are, as a rule, weakly forbidden in comparison with α transitions for even-even nuclei. For Po²⁰⁵ the anomalously small hindrance coefficient can be explained by the fact that it was actually calculated for a group of lines. This could

Table II

А	E _{α,} MeV	$T_{_{1}/_{2}}$	α/(α+E),%	F
209 207 205 203 201 199	$\begin{array}{r} 4.877 \\ 5.1 \\ 5.2 \\ 5.48 \\ 5.67 \\ 5.87 \end{array}$	100 y 5.7 h 1.5 h 47 min 17.5 min 11 min	$\begin{array}{c} \sim 100 \\ \sim 0.01 \\ 0.074 \\ \sim 0.02 \\ 0.8 \\ \sim 7 \end{array}$	$1.06 \\ 2.04 \\ 0.32 \\ 32 \\ 3.4 \\ 2.8$

also prove to be the case for other nuclei, since Forsling and Alväger established the presence of several groups of α transitions in the case of some neutron-deficient Po isotopes. For Po²⁰³ the large hindrance coefficient can be related to the fact that this nucleus could have a neutron configuration with only one neutron in the unfilled $f_{5/2}$ subshell. Then the α particle is formed from nucleons of different subshells, and such an α transition is, of course, forbidden. This suggestion is not in contradiction with the experimental value 5/2 for the spin of the Po²⁰³ nucleus [10].

¹ D. G. Karraker and D. H. Templeton, Phys. Rev. **81**, 510 (1951).

² Latimer, Gordon, and Thomas, J. Inorg. Nuclear Chem. **17**, 1 (1961).

³ E. T. Hunter and J. M. Miller, Phys. Rev. **115**, 1053 (1959).

⁴ Belyaev, Kalyamin, and Murin, Izv. An SSSR ser. fiz. **25**, 874 (1961), Columbia Tech. Transl. p. 886. ⁵ Belyaev, Kalyamin, and Murin, Programma i tezisy dokladov XII Ezhegodnogo soveshchaniya po yadernoĭ spektroskopii (Program and Summaries of Reports of the 12th Annual Conf. on Nuclear Spectroscopy), Leningrad, 1962, AN SSSR, 1962, p. 65.

⁶ Strominger, Hollander, and Seaborg, Revs. Modern Phys. **30**, 795 (1958).

⁷I. Perlman and J. Rasmussen, Alpha Radioactivity, Handb. d. Physik, Springer Verlag, Berlin, Gottingen, Heidelberg, 1957, Band 42, s. 109.

⁸ W. Forsling and T. Alväger, Arkiv Fysik **19**, 353 (1961).

⁹H. J. Mang, Phys. Rev. **119**, 1069 (1960).

¹⁰ S. Axensten and C. M. Olsmats, Arkiv Fysik 19, 461 (1961).

Translated by E. Marquit 2

8