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The alternating-current conductivity of a plasma is considered and it is demonstrated by the 
kinetic equation that the conductivity becomes negative in the presence of a drift with a veloc
ity exceeding the phase velocity of a certain wave. The appearance of a negative conductivity 
is connected with the directed motion of the space charge. The dependence of the conductivity 
on frequency is investigated and it is shown that the effect occurs only at low frequencies. The 
conductivity is also derived by taking into account the magnetic field and it is shown that in a 
weak field for which the electron cyclotron frequency wH is smaller than the collision fre
quency v the elementary formula (16) is valid. In a strong magnetic field, WH » v, the con
ductivity may also be negative, provided the drift velocity in the magnetic field exceeds the 
phase velocity of the waves. It is shown that a consequence of taking into account the velocity 
dependence of the collision frequency is renormalization of the drift velocity. 

SEVERAL recent papers have dealt with the con
ductivity of plasma media such as a gas-discharge 
plasma, plasma in a solid, etc. The formulas 
usually used for the conductivity are derived by 
introducing the collisions as small imaginary ad
ditions to the frequency, or by disregarding the 
collisions completely. This corresponds to a 
region of frequencies w much larger than the col
lision frequencies v, w » v. In many cases, how
ever, it is necessary to deal precisely with the 
frequency region satisfying the opposite inequality, 
w « v. For example, in a solid the effective fre
quency of collisions between the carriers and the 
lattice is on the order of 1012 -1014 sec- 1, and the 
condition w « v is satisfied for frequencies down 
to the infrared region. During a time equal to the 
period of the oscillations the electron experiences 
many collisions, and the character of its motion 
depends usually on the friction due to the collisions. 
Consequently it is necessary to take correct ac
count of the collisions when solving the problem 
for low frequencies. 

Such an analysis was carried out for the sim
plest case in [1], where it was found that the con
ductivity of the medium can be negative for certain 
waves in the low-frequency region. The conditions 
for the appearance of negative conductivity are 
similar to the conditions for Cerenkov radiation: 
the drift velocity must be larger than the phase 
velocity of the generated wave. However, in di
rected motion of the electrons the drift velocity is 
much smaller than the random thermal velocity of 

the electrons, and it is not obvious beforehand that 
the imposition of a small directional velocity on the 
random thermal motion can lead to the appearance 
of negative conductivity. To this end we undertook 
a kinetic analysis of the problem [1], which has 
confirmed in the region of small frequencies the 
elementary formula for the conductivity, obtained 
without account of the electron thermal motion [ 2]. 

As was shown in [ 1 •2], the appearance of nega
tive conductivity is connected with the directional 
motion of space charge, which plays here the role 
of the Cerenkov "emitter." Whereas in Cerenkov 
radiation each particle radiates separately (pro
vided only its velocity exceeds the phase velocity 
of the wave), in this case the wave is radiated by 
an aggregate of particles -the space charge drift
ing under the influence of the external field. The 
formation of the alternating component of the elec
tron density itself-the space charge-is due to the 
alternating field of the wave, which either amplifies 
or excites the space charge [2]. We therefore have 
here, as it were, a system (the space charge plus 
the wave) with a feedback loop. To the contrary, 
in the case of Cerenkov radiation, the electron and 
the wave it produces do not interact (in the linear 
approximation). 

The purpose of the present work is to show that 
the appearance of negative ac conductivity in the 
presence of a drift exceeding the phase velocity of 
the wave is a rather general property of such a 
wave, and to explain further the influence of the 
magnetic field and the dependence of the collision 
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frequency and the velocity dependence of the col
lision frequency on the magnitude of the effect. 

1. CONDUCTIVITY OF THE MEDIUM AT LOW 
FREQUENCIES 

We start from the kinetic equation for the elec
tronic distribution function f ( r, v, t) 

~~ + V"Yrf + ~ (E + + [vHJ) 'Vvf + S = 0, (1)* 

where E and H are the specified external electric 
and magnetic fields, respectively, and S is the col
lision integral. 

Assume that only constant time-independent 
homogeneous fields E= and H act on the plasma 
medium. The solution of Eq. (1) is sought in the 
form of an expansion in Legendre polynomials in 
velocity space: 

f (r, v, t) = ~ P" (cos ex.) fk (r, v, t). (2) 
k=O 

Under certain conditions, which will be discussed 
later on, it is possible to retain only the first two 
terms of the expansion (2) for the distribution 
function f: 

f (r, v, t) = fo (r, v, t) + (vjv) f1 (r, v, t), (2a) 

where f0 and fl satisfy the following system of 
equations (see L3•4J ) 

(3) ~to+ ~ divrf1 + 3; 0 , :u (v2 E=f1) + S 0 = 0, 

a~,+ V\lrfo + e!=~~ + ;c [Hf1 ] + S1 = 0, (3a) 

where S0 and S1 are the Legendre transformations 
of the collision integral [3]. 

We are interested in the ac conductivity of the 
medium in the presence of drift. "Turning on" 
the weak alternating field changes the distribution 
function, and small additional terms appear in the 
symmetrical part f0 and in the asymmetrical part 
f1 of the distribution function, owing to the simul
taneous presence of the alternating and constant 
fields: 

(4) 

In the approximation linear in the weak alternating 
field E~, assumed to be parallel to E=, the equa
tions for cp0 and CfJJ., as can be seen from (3) have 
the form 

a<po u d. eE= a ( 2 ) S eE~ a ( 2f ) 7ft+ 3 IVr~ 1 + 3mu2 Tv V ~1 + o =- 3mu2 Tv V 1 ' 

(5) 

*[vii] = v x H. 

aq>, + v\1 + eE= a<po + _!__ [H I + S = - eE~ ato (5a) at r(j)o m av me (j)1 1 m av ' 

where the collision integrals S0 and S1 contain 
cp0 and cp1 in lieu of f0 and f1 1 l • 

If we confine ourselves to purely elastic scat
tering, then [3] 

So = -lu• ! { V26el" (v) l X: ~~0 + V<po ]} , 

S 1 = v (v) q11, 6et = 2m/M, (6) 

where T is the temperature of the heavy particles 
( the lattice ) . 

In accordance with the definition of conductivity 
we have 

00 
e ,. 

ax = () = E~ ~ v3<p1X (v) dv, 
0 

(7) 

where x is the direction corresponding to the vec
tor E= 2 l. The dependence of cp on the coordinates 
and on the time is represented in the form of a 
plane wave 

<p (r, v, t) = el(wl-kr)<p (v); 

and we then obtain from (5a) 

ik2 v 
<p1z = v + iw <po; 

(8) 

(9) 

Y =: V + iw + w'tf(v + iw), S =: kx + kyWH/(V + iw), 

(11) 

wH = eH/mc is the cyclotron frequency, the mag
netic field H is directed along the z axis, i.e., 
perpendicular to the electric field E=. 

Substituting in (7) the values of CfJtx and assum
ing for the sake of simplicity, for the time being, 
that the collision frequency v does not depend on 
the velocity, we obtain for the conductivity 

(12) 

We now substitute into Eq. (5) the value (8) and 

1>This is true only for a collision integral in the form of a 
linear operator relative to the distribution function. If it is 
nonlinear, as for example when account is taken of the elec
tron-electron collisions, then So and S, in (5) and (3) will be 
different. 

2>we are interested in the conductivity along the drift only, 
and although the additions to the Hall emf and the conductivity 
"transverse" to the drift are of interest, they are beyond the 
scope of the present paper. 
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the values of cp1 from (9), (10), and (11); then, after 
first multiplying the equation by v2dv, we integrate 
it over all velocities. We obtain from (5) 

[w _ eE= (k _ 
nlj X 

00 

)] ~ v2cp0 dv 
0 

eE~[( kywH)]'f 2 = - kx- -+ . \ v f0dv. 
m"( V tW ._1 

0 

The expression (13) is obviously the continuity 
equation for the current. 

(13) 

It is seen from (12) and (13) that the conductivity 
can be determined rigorously in two limiting cases. 
First, when we can neglect the second terms of (12) 
and (13) compared with the first, and second, when 
the first terms can be neglected compared with the 
second. Let us determine the ratios of these terms 
and the conditions under which some can be dis
carded. It is obvious that, apart from a factor of 
the order of unity, we have 

00 00 

~ v4cpo dv = v~ ~ V2 cro dv, 
0 0 

where vt = ~ 2KTe/m is the thermal velocity of 
the electrons. From this follows immediately the 
condition under which one can discard the second 
term in (13) 

w II - eE= cos 9/myvphl ~ w2v~ I Vw2 + v2 v~h, (14) 

where vph = w/k is the phase velocity of some 
wave in the medium and () is the angle between the 
wave vector k and E=; for simplicity, the mag
netic field has been left out. Inasmuch as in our 
case, as will be shown below, we always have 
w « v, inequality (14) can be written in the form 

(14a) 

For semiconductors (see, for example, [ 5] ), vph 
is of the order of c0, the velocity of sound in the 
lattice, and the quantity vi/c~ plays the same role 
as the ratio M/m in the plasma. 

It is easy to see that if (14a) is satisfied the 
second term of (12) can also be discarded and 
then, using the normalization condition 

00 

~ v2/ 0 (v) dv = n0 

0 

(15) 

( n0 is the number of particles per unit volume) we 
obtain from (12) the following expression for the 
conductivity 

{ 
v 6 v w -r }-1 a = <5o 1 - ~ cos + ~ H p sin 9 

1 + w2 't'2 v h 1 + ro2 't'2 v h 1 + 002 T2 ' Hp P Hp P Hp 

(16) 

where v= = eE=/mv is the drift velocity, and 
a0 = e2n0/mv is the de conductivity. Formula (16) 
in the absence of a magnetic field and for k II E = 
goes over into the well known [1 •2] formula 

(16a) 

From (16) we see that the influence of the magnetic 
field becomes appreciable only if the cyclotron 
frequency wH is of the same order as the colli
sion frequency. 

In the other limiting case, when the inequality 
inverse to (14) is satisfied, the first terms in (12) 
and (13) can be neglected compared with the second, 
and the conductivity will have the form 

2k;/r + (kZ + k;)fv- wHkZ (1- wHjv) /Vi 

a = ao k;;1 + (kZ + k~)!v- kzro~/rv2 
(17) 

i.e., the appearance of negative conductivity with-
out a sufficiently strong magnetic field is impossible. 

We note that inasmuch we do not need the value 
of the distribution function in the calculation of the 
conductivity, and condition (15) is sufficient, the 
heating of the electron gas by the field E= does 
not influence the value of the conductivity. The 
heating determines the thermal velocity of the 
electrons and, thus, at higher temperatures the 
effect merely shifts towards the lower frequencies 
[see (14a) ] . 

Let us consider now the case of a strong mag
netic field, when the cyclotron frequency of the 
electrons WH is much larger than the collision 
frequency v, i.e., wH » v. For a solid with 
v ~ 1012 sec- 1 (this is a relatively good crystal), 
a very strong field is necessary to satisfy this 
condition: H should be of the order of 105 - 106 Oe. 
However, in a relatively dense and weakly ionized 
plasma, for which this entire analysis is also valid, 
the collision frequency is v ~ 109 - 108 sec- 1 and 
the condition wH » v can be realized for ordinary 
fields. 

A condition analogous to (14) has in this case 
the form 

w-rpv~jv~h ~ 11 + v~ sin Sfvph \. (14b) 

where v~ = eE=/mwH = cE=/H is the drift in 
the magnetic field. In this case the conductivity 
will obviously be equal to 

a=o0wfj2-r;2 [1 +v~sinS/vphl- 1 • (18) 

Thus, in a strong magnetic field, if the wave 
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propagates perpendicular to the electric and mag
netic fields, it can become intensified (compare 
with[ 6J). 

2. LOW AND HIGH FREQUENCIES, REGION OF 
APPLICABILITY 

Let us consider now the question of the appli
cability of the systems (13) and (5), and of the role 
of the collisions. As shown in [3], the system (3) 
is valid for a homogeneous plasma (we leave out 
the magnetic field for simplicity) if 

(19) 

i.e., practically always. Relation (19), if we dis
regard special cases when the collision frequency 
1.1 depends on the velocity (see [ 3] ) is satisfied 
for the entire region of frequencies, both low 
w « 1.1 and high w » v. However, if the medium 

I 

is inhomogeneous, i.e., Bcp/Br ~ 0, the condition 
for the applicability of the system (3) is different: 
the functions cp 2, cp 3, etc. in the expansion (2) can 
be discarded only in the case when [ 3,4] 

(20) 

Further, following [ 3J, we obtain from the equa
tion for cp 2 that 

if the field E= is weak; on the other hand, in the 
case of a strong field 

We then estimate cp 1 and cp 0 from the system 
(5), putting S0 [cp 0 ] ~ Oelvcp 0• As a result we ob
tain for the condition (20) 

(w 2 + 6~ 1v2)-'1• ~ (w 2 + v2)-'1•, (20a) 

which denotes in fact 

W~V, (21) 

The conditions (20), as shown by Ginzburg and 
Gurevich [ 4], give the limitations on the degree of 
nonstationarity and inhomogeneity of the plasma. 
Physically this means that the energy and density 
of the electron should not change appreciably over 
a time ( w2 + v2 )- 1 / 2, nor should the electron cur
rent change over the effective range l eff ""v t Tp [ 4], 

i.e., zeff « A. = 27rk- 1• 

On the other hand, in the region of high fre
quencies, w » v, the collisions can be neglected, 
and then the kinetic equation (1) for the addition 
to the equilibrium distribution function f00 will be 

011(/0t + VOII(jor + (eE~/m) ofoofov = 0, (22) 

where cp ( r, v, t) is a small deviation of the true 
distribution function from the equilibrium value f00 • 

In the case of small frequencies, when the colli
sions play the decisive role, we obtain the complete 
system of equations [see ( 3a) ] both for the function 
f and for the addition cp to it. However, at high 
frequencies we cannot obtain a complete system of 
equations for the determination of f00 and cp. 
Therefore the form of the equilibrium distribution 
function is usually postulated: if there is no exter
nal field, then f00 is chosen to be a Maxwellian 
distribution function, while in the presence of a 
field usually one chooses a Maxwellian distribution 
with drift: 

foo = const ·exp [- (v- v=)2!2xTel· (23) 

The expression for the conductivity in the case 
when w » 1.1, as can be readily seen from (22) and 
(23), will be 

. 1 d atoo!av 
a-t~ vw-kv' (24) 

i.e., the conductivity reverses sign when 
v= > vph• where V:o is a certain directional veloc
ity. 

In the literature (see [ 7, 9] and the bibliography 
therein) the investigation of the instability of os
cillations of a plasma medium entails the use of 
expression (24) for the conductivity, which is valid 
only at high frequencies. Therefore, although the 
condition for the instability of the oscillations 
( v = > Vph) is formally the same in both cases (16) 
and (24), viz., the drift velocity should exceed the 
phase velocity of the generated wave in the system, 
nevertheless the regions of application ( low and 
high frequencies) and the very nature of the effects 
are somewhat different in these cases. 

On the basis of the purely qualitative picture of 
the phenomenon 12J, the appearance of negative 
conductivity at low frequencies is connected with 
the direction of motion of the space charge. This 
is also clearly seen from the expression for the 
conductivity (12). The reversal in the sign of a 
is due to the first term in (12), i.e., to a quantity 
proportional to v=qM where 

00 

q~ = e ~ v2<p0 (v) dv. 
0 

(25) 

Expression (25) has the physical meaning of the 
current due to the directional motion of the space 
charge, which occurs if the condition cp 0 ~ 0 is 
fulfilled. At high frequencies, no space charge is 
produced, and the addition to the symmetrical part 
of the distribution function cp 0 is much smaller 
than cp 1• 
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We note still another circumstance. Kovrizhnykh 
and Rukhadze [1o] considered the question of the 
instability of longitudinal 11oscillations of the elec
tron-ion plasma in the presence of electron drift. 
If we trace the dependence of the growth increment 
on the electron concentration, then the growth of 
longitudinal waves (ionic sound) upon change in the 
concentration is independent of the concentration 
over a wide range of the latter. As regards low 
frequencies, when the conductivity is given by (16), 
an analysis of the dispersion equation for the ex
citation of sound waves in a piezo-semiconductor 
[tt] shows that the growth tends to zero as n0 - 0, 
i.e., it depends essentially on the carrier concen
tration. 

3. ACCOUNT OF THE VELOCITY DEPENDENCE 
OF THE COLLISION FREQUENCY 

The foregoing analysis did not take into account 
the velocity dependence of the collision frequency, 
so that we shall now discuss this question. It is 
impossible to obtain any quantitative deductions 
without knowing the explicit form of the function 
v ( v) and of the distribution function cp, and it is 
necessary to solve first the kinetic equation for cp. 
However, the scheme developed above for the 
determination of the conductivity directly from the 
kinetic equation itself makes it possible to draw 
certain qualitative conclusions concerning the in
fluence of the dependence of v ( v) on the value of 
the conductivity. 

We consider only the frequency region (14a) 3l, 

which in our opinion, is of greatest interest. For 
the sake of simplicity we assume that there is no 
magnetic field. The dependence of the collision 
frequency on the velocity upon collision with a 
neutral molecule has, as is known, the form 

(26) 

where a is the ''radius'' of the molecules, and 
N M is the molecule concentration; on the other 
hand, in the case of collisions with ions (see [ 3 •13]) 

we have 

v (v) = (2nN1e4jm2v3) In (I + p~m2v4/e4), (27) 

where Ni is the ion concentration, and Pm is the 
maximum impact parameter, which is equal in order 
of magnitude to the Debye screening radius [12]. 

We confine ourselves to an examination of thesE 

3lit is obvious that condition (14a) must now be taken in 
the sense that the value of v is taken at the point v = v, 
where v is a certain velocity at which the function cp0 (v) 
has a maximum (v"' Vt in order of magnitude). 

two particular cases of the velocity dependence of 
the collision frequency, since they already make it 
possible to trace the main quantitative laws. From 
the definition of the conductivity (7) and (9) it fol
lows that 

00 2£ 00 

cr = - .!':__I va ato - 1- dv- e = \ ~ a<po dv. (28) 
m j av v (v) mE~ j v (v) av 

0 0 

As before, integrating (5) with respect to the veloc
ity, we obtain 

00~ (I eE= cos e) 2 d eE= cos 6 co~ v' (v) 3 d --- v v --- ---v v 
mvph" (v) «'Po + 3mvph v2 (v) <ro 

0 0 

00 

eE~ I v3 ato ' 
= - -3-- cos e .\ -(-)au av. mvph 0 v v 

(29) 

We further proceed in the same manner as in the 
derivation of (16). We readily see that it follows 
from (28) and (29) that 

(30) 

(31) 

The drift velocity v= is determined by the quantity 
v= = E=/mveff· 

The effective collision frequency J.Jeff is deter
mined by the type of scattering 

(32) 

for the scattering by molecules and ions, respec
tively. 

The numerical coefficients a 1 and a2 are 
determined from the relations 

(33) 

(34) 

where by virtue of the symmetry of the function cp 0 

the quantities a 1 and a 2 are always positive. This 
pertains also to the conductivity 0:0, inasmuch as 
f0 is also a symmetrical function in velocity space. 
We note that from (33) we can draw certain con
clusions concerning the temperature dependence of 
the drift (mobility). In addition, the frequency 
region where this effect takes place is in itself de
pendent on the temperature and on the type of 
scattering. For example, in scattering by neutral 
molecules the inequality (14) assumes the form 

wm-'1•V2xT,Ia1na2NMv~h ~; [I- v= cose /vph[, (35) 

i.e., it shifts towards the lower frequencies with 
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increasing temperature in proportion to the square 
root of T e; in the case of (27) (scattering by a 
charged ion) we have 

wm-'1• (2xT,)'I•/2na2N;v~h< [1 - v= cos 6 I V.ph \. (35a) 

i.e., the shift is proportional to T512 4). 

We see therefore that when we take into account 
the dependence 11 ( v), the main formula for the 
conductivity [compare (16) with (30) ] remains the 
same as before, but the drift and conductivity are 
redefined~ 

Let us make a few general remarks. We have 
shown under rather general assumptions that for
mula (16) holds for the conductivity. In its deri
vation we chose for the sake of simplicity the col
lision integral for the symmetrical part cp 0 in the 
Davydov form [see [ 5], formula (6)], and used the 
condition 

OJ 

~ v2So [<pol dv = 0. 
0 

(36) 

However, even other forms of the collision integral, 
more general than (6), can also satisfy condition 
(36). Thus, the results will not change if we use 
a different form for S0 ( it must always be remem
bered here that cp 0 is not the distribution function 
itself, but only an addition to it, see footnote 1)). 

We note also that an account of the electron
electron collisions, in an analysis of problems con
nected with a dense weakly-ionized plasma and a 
plasma in a solid body, is immaterial. This is 
connected with the fact that the relative concentra
tion of the electrons iJ. = n0/Ni or n0/NM is ex
ceedingly small. For semiconductors, for example, 
we always have iJ. < 10-4• 

In conclusion we note that the buildup of sound 
oscillations without a magnetic field was observed 
experimentally by Hutson et al [13]. In the case 

4>The estimates (35) are tentative, since a, and a2 can 
also be temperature-dependent. 

of a strong magnetic field ( H ~ 2 x 104 Oe) at 
helium temperature ( T ~ 2° K), Esaki [13] also 
observed in bismuth crystals low frequency cur
rent oscillations ( w ~ 1 Me), and the conditions 
for their appearance were the same as in our ex
periment, namely v! > c0 -the velocity of longi
tudinal waves in bismuth. 
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gratitude to Professor V. L. Ginzburg, S. V. 
Bogdanov, M. E. Gertsenshte1n, A. V. Gurevich, 
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and hints. 
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