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Interaction between conduction electrons in an antiferromagnet, due to spin wave exchange, is 
investigated. It is shown that the interaction is repulsive if an electron pair is in the singlet 
state and attractive if in the triplet state with a zero total spin projection. Attraction is great­
est in the p-state. Spin wave exchange in an antiferromagnet may produce superconductivity. 

MoDERN superconductivity theory [ 1- 3] makes used in these investigations is applicable only for 
use of the notion of effective interaction between the analysis of the s-state of the electron pair. 
the conduction electrons, resulting from phonon 1. We describe the interaction between the con-
exchange. This interaction has the sign of attrac- duction electrons and the sublattice magnetization 
tion and leads to the production of Cooper pairs in within the framework of the sd-exchange modelC1 •2J. 
the S-state and the appearance of an energy gap in The energy of the system of s-electrons in the 
the excitation spectrum. One of the main accom- field of d-electrons is written in the form 
plishments of this theory is the explanation of the 
isotopic effect, which is the consequence of the 
phonon mechanism of superconductivity. 

There is, however, a known superconductor 
(ruthenium) which does not display the isotopic 
effect [ 4J. This suggests that superconductivity may 
be caused by some other (non-phonon) mechanism. 

This note is devoted to an investigation of one 
of the possibilities, namely interaction between 
the conduction electrons in an antiferromagnet, 
caused by exchange of virtual spin waves. It turns 
out that this interaction is repulsive if the particle 
pair is in the singlet state and attractive for a 
pair in the triplet state with summary spin pro­
jection equal to zero. The attraction is the most 
intense in the p-state. 

The possibility of formation of Cooper pairs in 
a state with nonzero momentum was predicted in 
[S-7]. An investigation of the stability of the states 
proposed in these papers, carried out by Vaks, 
Galitskil, and Larkin [a], has shown that the ground 
state is a complicated superposition of states with 
different Cooper-pair momentum projections. We 
shall follow the simple scheme of Gor'kov and 
Galitskil [ 7], which helps explain the very existence 
of superconductivity. 

An analogous problem was investigated for the 
case of a ferromagnet in several papers [ 9•10]. 

The conclusion that an effective attraction exists 
in the triplet state was drawn, however, only by 
Akhiezer and Pomeranchuk [tt]. It is stated in[ 9•10] 

that exchange of spin waves leads to a repulsion 
between the conduction electrons, but the procedure 

H;nt = ~ ~ d3 r\jl~ (r) H(r) 'llo: (r) , 
<X 

(1) 

where lj!+ and lj! are the operators for the creation 
and annihilation of the conduction electrons, while 
the energy density H ( r) is equal to 

H (r) =- 2IsMIM0 • (2) 

In the last formula I is the parameter of the sd-
exchange interaction, which has the dimension of 
energy, s is the s-electron spin operator, M 
= M1 + M2 is the density operator of the summary 
magnetic moment of the sublattices, which are 
assumed to be identical, and M0 is the maximum 
sublattice magnetization. 

The operators M1 and M2 must be expressed 
in terms of the spin-wave operators. To this end 
we write the phenomenological Hamiltonian of the 
system of d-electrons, neglecting their spatial 
motion [ 13]. 

H•s = \ d3r {__!__a (aM1 oM1 + oM2 oM2) 
p J 2 OX; OX; ax, ax, 

+ al2 a,Ml a:'2 + 6MlM2- 12 ~ [(nM1)2 + (nM2)21 + 8H2}' 
~~ n 

(3) 
where the field H produced by the spin waves is 
determined from the equations 

curl H = 0, div (H + 4nM) = 0, (4) 

and the constants 6, a, a 12 , and {3 are positive, 
with a > a 12 ; n is the unit vector in the direction 
of the easiest magnetization axis (the z axis). 

The Hamiltonian Hsp is diagonalized by means 
of the substitution 
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M (n) _ t"M(n) = (2f1Mo)'/, "\1 ( (n)b(m) + (n)*b+(m)) lkr 
x y V L..i Um k Vm -k e , (5) 

k,m 

M <1> - - M<2> - M - M<n>< 2>j2M z - z - 0 l_ 0> (6) 

where b and b+ are spin-wave creation and anni­
hilation operators satisfying the Bose commutation 
relations, the index n labels the sublattices and 
m the oscillation modes ( n, m = 1, 2), J.L is the 
spectroscopic splitting factor, and V is the volume 
of the crystal. Considering the temperature to be 
low, the occupation numbers of the spin waves are 
assumed equal to zero. 

The momentum projection operators should 
satisfy the well known commutation relations. 
The commutation relations lead to several simple 
equations connecting the transformation parameters 
(5), which will not be written out here. If we neg­
lect the last term in the right half of (3) (magnetic 
energy), then the system of equations for u~) and 
v~) does not have .a unique solution, and the 
energies of the different oscillation modes coincide: 

!tl~l.2) - Ulq = [(20 + ~ + aq2 + a12q2) (~ + aq2 - a12q2)]'1•, 

(7) 

where q is the spin-wave momentum. The role of 
the magnetic energy reduces thus to a lifting of 
the degeneracy, so that the parameters u~) and 
v}g) can be correctly chosen: 

(8) 

where (,Oq is the polar angle of the vector q and 

(9) 

Substituting the expression for the magnetization 
M in (1) and recognizing that the nonvanishing 
matrix elements of the circular spin projections 
are equal to 

( 1/2[Sx--i-is11 j- 1 / 2) =(- 1/2jsx-is11 [1 / 2) =1, (10) 

we obtain the Hamiltonian of the interaction be­
tween the electrons and the spin waves 

" -v-( 2[1 ' 2 Wq 
H ·,I = I - -) "\1 ' 

11 \.'Hoi' LJ (A _:_ ul )'/,+(A - w )11 2 

p, q q ' q q q 

Here 3.p and ap are the creation and annihilation 
operators of an electron with momentum p, while 
the "plus" and "minus" indices correspond to the 
spin-projection direction. The Hamiltonian (11) 
is in our case the analogue of the Froehlich Hamil­
tonian for the electron-phonon interaction. The 
major difference, however, is that the electron 
spin projections change upon absorption or emis­
sion of a spin wave. 

2. Our next purpose is to obtain the Hamiltonian 
of the direct interaction between electrons. We 
eliminate the spin-wave operators in the second­
order perturbation theory, defining the matrix ele­
ments of the electron-electron interaction Hamil­
tonian in the following fashion: 

<m I Hee In)= <m I Htnt (En- Hor1 Htnt In)· (12) 

Here In> and I m > are purely electronic states, 
which are the eigenvectors of the electron inter­
action Hamiltonian H0: H0 In> = En In>. As a 
result we obtain 

/ 2[1 (J)q ( __ __::1 __ _ 
Hce ~~- ~\1oV ~ Aq + Bq Sp-q- \;p + wq 

p, p • q, cr 

+ 1 ) + + r - r + ap'+q. cr ap•. -cr ap-q, -cr apcr • 
~p' ~P'+q Wq ' 

(13) 

Here Bq = .J A~- w~ and tp is the electron 
energy measured from the Fermi energy. The 
electrons interact only if their spins have opposite 
directions. 

We simplify the problem, however, by taking 
into account, as is customary, only the interaction 
between electrons with opposite momenta. The 
Hamiltonian of such an interaction has the form 

p, p', 0" 

where 

v ( ') - - 4./2[1 ~ _ ___::1'------
p, p - M A + B 2 _ (" _ r )2 

0 q q (J) q ~p ~p· 
q = p + p'. 

(15) 

The interaction "potential" V(p, p') has a nega­
tive sign on the Fermi surface, corresponding to 
repulsion of the electrons in the S-state. 

To investigate the ground state of the system 
with an interaction described by the Hamiltonian 
H:red• we employ the Gor'kov technique of splitting 
the chain of equations for the Green's function [ 3], 

as generalized in the paper by Gor'kov and Galit­
skil C7J to include the case of condensation of 
Cooper pairs with nonzero relative moment. The 
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difference between our Hamiltonian (14) and that 
used in [ 4- 6] lies in the fact that only electrons 
with opposite spin projections interact in an anti­
ferromagnet. Therefore the triplet state of the 
pair is not degenerate in the total spin projection. 
The only permissible value of the summary-spin 
projection of the pair is zero. 

Assuming that in the ground state the pairs 
have a momentum l (even momenta correspond to 
the singlet state and odd ones to the triplet state), 
we introduce, following [ 1], the Green's functions 

gaa' (p, t - t') =- i (Tapa (t) a;a' (t')) =g (p, t-t') baa', 

Finaa' (p, t - t') = <N + 2, l, m I Ta~p. a (t) a;a' (t') IN) ' 

Fmaa' (p, t- t') = (N I Tapa (t) a-p, a' (i')] N + 2, l, m) ' 

(16) 

where the state IN+ 2, l, m> is obtained from 
the ground state I N > of the system o~ N particles 
by adding a pair with relative momentum l and 
projection m. 

The averages of the four electron operators are 
written in the following form: 

('IJ'IJ'P+'i'+) = ~ (N I 'P'P IN+ 2, l, m) 
m 

(17) 

The equations of motion for the Green's func­
tions have the form 

(i ~ - bp) gaa' (p, i- i') + (2~)3 ~ ~ d3p'V (p, p') 
m 

X F ma, -a(P', 0) F:Z,-a,a' (p, i - i') = baa' b (t - t') , ( 18) 

(i ~ + bp) Finaa' (p, t - t') - (2~)3 ~ d3 p'V (p, p') 

X Fma, -a (p', 0) g-a, a' (p, f - t') = 0. (19) 

We can therefore readily conclude that the matrix 
Fi"naa' (as well as F maa') does not have diagonal 
elements in the spinor indices. This means that 
the total-spin projection of the bound pair of the 
electrons is equal to zero. 

Solving the system of equations for the Fourier 
components of the Green's functions, we obtain, 
as in [1], an equation for the energy gap .6 ( p): 

!'! (p) = (2~)2 ~ Vz (p, p') ~ (~.'1 p' 2 dp' . (20) 

In this equation V z ( p, p' ) is the coefficient in the 
expansion of the interaction "potential" in Legen­
dre polynomials 

V (p, p') = ~ (2/ + 1) V1 (p, p') P 1 (cos pp') , (21) 

and E ( p) = ,} _62 ( p) + ?;;~ is the excitation energy. 

Equation (20) has a nontrivial solution only if 
the quantity V z ( p0, Po) = Vz is positive on the 
Fermi surface ( p = p' = p0 ), meaning attraction 
of the electron pair in the state with momentum 
l . We must therefore investigate expression (15) 
for V ( p, p' ), putting sp = sp' = 0 and q2 

= 2p% ( 1 + x), where x = cos pp'. The value of 
P ( p 0, p 0, x) is 1 > 

V (p0 , p 0 , x) =- 212/M~{!b +(a+ a 12) p~] 

(22) 

We make use here of the fact that the anisotropy 
constant {3, which is determined by the relativistic 
interactions, is small compared with 6 [i3]. 

The coefficients V z are determined by the 
integrals 

where 

a = b + (a + a 12) p~, b = (a + au) p~ . 

(23) 

(24) 

The odd coefficients Vm+i turn out to be posi­
tive, while the even ones V2n are negative. This 
means that in the triplet state ( l = 2n + 1) the 
electrons attract and cannot form Cooper pairs, 
while in the singlet state ( l = 2n) they are re­
pelled. By determining the sign of the derivative 
d I Vz I /dl, we can readily find that the absolute 
value of Vz decreases with increasing number: 
I Vz I > I Vz+ 1 I. Therefore the maximum attraction 
corresponds to the P-state ( l = 1). The coeffi­
cient vi is equal to 

JZ 1 [ a a+ b J V1= -- -ln---2. M2 b b a- b 
0 

(25) 

The kernel of the integral equation (20) decreases 
rapidly with increasing distance from p = p 0 over 
a distance on the order of the characteristic fre­
quency of the spin wave. Equations of this type were 
investigated in [i4J. The asymptotic solution (as 
Vz - 0) has the form 

!'! (p) = 2w (p) exp (- l!N0Vz), (26) 

where w ( p) is a quantity that decreases with in-

l)We note that in expression (22) for V(p0 , p0 , x) contribu­
tions are made by large spin-wave momenta q - p0 • In the 
theory of the thermal properties of antiferromagnets[13 ] the 
quantity (a+ a,2)q2 is usually neglected compared with 8. If 
we had likewise neglected this quantity, then V(p0 , p"' x) would 
not depend on x and this would mean in practice the lack of 
interaction for electrons in pairs with nonzero momenta. 



1596 I. A. PRIVOROTSKII 

creasing I p - Po I and having at p = Po the order 
of magnitude of the characteristic spin-wave fre­
quency, while N0 = p~/27T2v0 is the density of the 
energy states on the Fermi surface. In our case 
Vz = Vi in the exponent. 

3. So far we have disregarded the influence of 
the phonons, which also play the role of carriers 
of interaction between electrons. The "potential" 
of this interaction, obtained from the Froehlich 
Hamiltonian, is 

Vph (p, p') = g2w~/[w~ - (?;p - ~p')2 1 , (27) 

where g is the constant of the coupling with the 
phonons and q = p' - p, while wq is the frequency 
of a phonon with momentum q. On the Fermi sur­
face this "potential" is a constant and makes no 
contribution to the summary Vz when l ~ 0. If 
g2 is sufficiently large, namely i + V0 > Vi (it 
is assumed here that the Debye and Neel tempera­
tures are of the same order), where 

/ 2 a +b Vo=--ln-­
bM~ a- b' 

(28) 

then the produced Cooper pairs will be in the 
S-state. The isotopic spin may nevertheless be 
absent here if I V0 I ~ g4N0 • 

An account of the screened Coulomb repulsion 
(the role of which is analogous in the isotopic ef­
fect) can be readily made and leads to the ordinary 
logarithmic su~rconductivity criterion [2]. 

I am grateful to M. I. Kaganov for interest in 
the work and for numerous discussions, and also 
to I. M. Lifshitz, A. I. Akhiezer, and L. P. Gor'kov 
for a discussion of the results obtained. 
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