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Equations describing the behavior of a weakly turbulent plasma in a magnetic field are ob­
tained with mode coupling taken into account. The mode coupling is weak in such a plasma 
and can be introduced by expanding in powers of the square of the oscillation amplitude. The 
anomalous diffusion of a plasma in a magnetic field in the presence of fluctuations is discussed. 

1. INTRODUCTION 

A plasma is capable of many more different forms 
of turbulent motion than an ordinary fluid. In par­
ticular, in addition to the usual strong magnetohy­
drodynamic turbulence [i ,2] a plasma can exhibit a 
so-called weakly turbulent state (this terminology 
is due to A. A. Vedenov) characterized by the exci­
tation of many weakly interacting modes of oscilla­
tion. 

In terms of a statistical description the weakly 
turbulent state is very similar to a system of weakly 
interacting particles (i.e., the same plasma viewed 
thermodynamically) for which one naturally con­
siders an expansion in the ratio of mode interaction 
energy to total mode energy, this ratio being a small 
quantity. Vedenov et al C3J and Drummond and Pines 
C4J have shown that even the quasi-linear approxi­
mation, in which mode coupling is neglected, can be 
used to examine certain aspects of mode ',excitation 
and the effect of feedback on the average particle 
distribution function in a uniform weakly turbulent 
plasma. 

Unfortunately, the quasi-linear approximation is 
not applicable to a number of problems concerned 
with anomalous diffusion of a plasma across a mag­
netic field, particularly those related to the plasma 
drift instability. [s, 6] In problems of this kind one 
must take account of mode coupling. 

In contrast with the dynamic analyses of Drum­
mond and Pines C4J and Sturrock, C7J in which the 
question of mode coupling was discussed in terms 
of uniform Langmuir oscillations, in the present 
work a statistical approach is used from the very 
beginning; specifically, we form a chain of equations 
for correlation functions, which are obtained by 
averaging over a statistical ensemble. In this case 
the expansion in terms of the small mode interac­
tion energy corresponds to taking account of higher 
order correlations between modes, that is to say, 
the number of modes involved in a given elementary 
interaction process. 

For simplicity we limit ourselves here to the 
first nonvanishing correlation, the third. The neg­
lect of higher correlations is evidently justified in 
transparent regions, where wave damping or growth 
is small. More precisely, the amplitude of a given 
mode must not change appreciably during the char­
acteristic time required for an appreciable phase 
shift to arise between different modes. 

It is also shown here that an analogous chain of 
equations can be constructed by the Wiener method, 
[B] which is based on the expansion of an arbitrary 
random process in powers of the Brownian motion. 
The results of the two expansions are found to be 
somewhat different, but this difference can be attri­
buted to the large number of simplifications used in 
truncating the chain in the Wiener technique. 

2. LONGITUDINAL OSCILLATIONS 

For reasons of simplicity we start with an anal­
ysis of longitudinal waves, in which case the electric 
field is derivable from a potential: E = - 'Vcp. In a 
strong magnetic field these waves would be the ion 
acoustic waves, which can be converted into drift 
waves in an inhomogeneous plasma, [ 6] and the 
plasma waves (Langmuir). The distribution func­
tion fj for J?arti?les of ty~e j is broken into two 
parts fj = f~ + FJ where f~ =' < fj > is the mean 
value of the distribution function taken over a sta­
tistical ensemble. 

We assume that the averaged functions f~ are 
slowly varying functions of space and time. We also 
assume that the wavelength of the high-frequency 
oscillations excited in the plasma is much smaller 
than the scale size of the inhomogeneity, so that Fj 
can be expanded in a Fourier integral: 

pi,=~ F~w(v) e-iwt-clkrdwdk; 

this expression is substituted in the kinetic equation 
(with self-consistent fields) which is then separated 
into two equations by the averaging process: 
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at(, j ' ej { 1 } an 
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(1)* 

(2) 

where 4>kw is the Fourier component of the elec­
tric field potential, given by 

4Jte. (' . 
<Dko> = ~ ~~ \ Fkwdv, 

i • 

while the remaining notation is conventional. 
We rewrite (2) in the form 

FL (v) = gL, { k<Dkwfi: + ~ k' (lD·k'w'Fk-k',w-w' 

- (ll>k'w'Fk--k',w-w)) dk'dw'}, 

(3) 

(4) 

where ~w = iLj 1 ( e/mj) 8/8v is an operator that 
operates on the variable v. 

Neglecting quadratic terms in (4) we have 

where 

Substituting this expression in (3) we obtain the 
dispersion equation E = 0, where 

(5) 

e (k, w) c.~ I --- ~ 't~ei ~ f.!L, (v) dv (6) 

I 

is the dielectric constant of the plasma. 
In the general case E is complex, correspond­

ing to wave damping or growth. In the unstable 
case ( Im w > 0) the oscillations obviously grow so 
long as they do not affect the average distribution 
function and so long as there is no interaction be­
tween modes due to nonlinear effects. When the 
growth rate is small, i.e., when Im w << Re w, one 
expects that the growth of the oscillations will stop 
at a rather low level, in which case the nonlinear 
interaction remains small. Making use of this sit­
uation we can expand in the ratio of mode interac­
tion energy to total mode energy, retaining only the 
first term in the expansion. 

We first consider a uniform steady-state situa­
tion. In this case all double correlations contain 
a o -function; specifically 

*[vH] = v x H. 

( <l>k'w'<l>~w) = hwk-26 (w- w') 6 (k- k'); 

( Fk-.,,.<t>~w) = P("' (v) 6 (w- w') 6 (k- k'). 

Multiplying Eq. (4) by 4>kw and averaging we have 

PL (v) = ~-tLk- 1 fkw + g'"' ~ (k- k') Q~'w',kw dk'dw', (7) 

where Qk' w', kw ( v) is the triple correlation func­
tion: 

Q(.w',kw6 (k- k") 6 (w - w") = < Fk'w'<Dk-k',w-w·<D~"w"). 

Multiplying (4) by 4>k"-k,w-w"<l>kw and then 
averaging over the statistical ensemble we obtain 
an equation for the triple function. The right side 
of the equations then contains the quadruple function, 
for which an additional equation would be required, 
and so on. Making use of the assumption that the 
interaction is small we now truncate the chain, 
neglecting the quadruple correlation of modes char­
acterized by different k and w i.e., we equate the 
quadruple correlation function to the product the 
pair functions. In this approximation we have 

j { k j k'- k• j } + gk'w' /[i hwPk'--k,w'-w + (k' _ k)2 h•-k,w'-wPkw ' 

qk'w',kw6 (k'- k") 6 (w'- w") = (<Dk'w'<Dk-k',w-w·<D~"w"). 
(8) 

Using (3), we eliminate q from (8) and find 

Q ('w',kw = ~ G(\.,• { ~2 hwP~'-k,w'-w + (~: = ~)2 f k'-k,w'-wP~"'} 
s 

+ q~'w',kw, (9) 

Here, Gk~ is an operator that operates on an arbi­
trary function of velocity y ( v) in accordance with 
the rule 

G~"' y(v) = 6i,gkwY(V) + k s~~~s w) ~-tL ~ gLy( v) dv, 

where by E1 ( k, w) we mean Re E ( k, w), since the 
imaginary part of E is small by assumption and can 
be neglected in the approximation we are using here. 
However, in view of the possibility that Re E can 
vanish we must establish a rule for going around 
the poles. This rule is established on the basis of 
the reasonable assumption that taking account of 
the higher correlations must lead to damping of 
the free oscillations in Q ~ o (E). Thus, the poles 
of Q must be traversed, as usual, in the upper 
half plane of the complex variable w. In other 
words, by E1 we are to understand Re E: with an 
added imaginary constant that takes account of the 
damping of Q. 

The quantity q 0 in (9) arises by the elimination 
of q; at this point q 0 is an arbitrary solution of the 
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equation E1 ( k' ,w') q~' ,w',kw = 0. The quantity q0 

includes the damped initial correlation, which can 
be neglected, and a stationary part, which can be 
found from the following considerations. In (8) we 
have taken account of. a small quadratic term in 
the expression for Fk'w' and in this case the 
quantities <I>k-k',w-w' and <l>k"w" can be taken in 
the zeroth approximation, that is to say, we assume 
that they are entirely uncorrelated. Similarly, in 
the expression for q in <I>k'w' we keep only the 
zeroth term, which represents the potential of the 
free oscillations, so that E1 ( k', w) <I>k'w' = 0; but in 
this case we must take account of the quadratic 
terms by means of (3) and (4) in <I>k-k',w-w' and 
<l>k"w". Again replacing the quadruple correlation 
function by the product of the pair functions we re­
duce this additional correlation to the form 

0 4Jte5 

qk'w', kw = L I k'- k 12c1 (k- k', W- w') 

k- k' s• } -+- I k _ k' l2 h-k', w-w'Pk'w' dv. (10) 

If Eq. (9), which gives Q, is substituted in (7) 
taking account of (10) it is evident that P~ can be 
written as a sum of two terms w 

PL (v) = k-1~ALhw + p(w (v); 

the first term is proportional to Ikw while the 
second is a small quantity. 

Neglecting the quantity Pkw in the expression 
for Q we divide each of the expression in (7) into 
two parts: 

~; ; , "V (' ( k- k' ; ) G' { k ~, 
flkw = flkw I k.J j I k _ k' 12 gkw k'w' k flk'-k, w'-oo 

s 

k'- k ~, } I dk'd I + I k' _ k I flkoo k'-k. oo-oo· ro 

(' s ( ') { k ~, ( ') k'- k ~, ( ')} 
X .\ gk'w' V k flk'-k, oo'-oo V + I k' _ k I flkoo V 

X dv' I k'-k, oo'-oodk' dro', (11) 

· 4Jte \ ( k k' · · · ) (' · • 
pL., (v) = L k•e: (k: w) j I k = k' I gkooflk'oo' j g~"' (v') 

s 

r k' ~. 
X LF 1-l~-k', oo-oo·(v') 

k -·k' ~,. ')}d 'I I dk'd ' +I k _ k' I flk'oo' (v V k'ro' k-k', oo-oo' ro · (lla) 

We now introduce the effective dielectric con­
stant of the weakly turbulent plasma 

s(k, ro) =I- L!•n;1 \ iiL<v)dv, (12) 
I ' 

using the representation given above for Pkw as a 
sum of two terms, multiply (3) by <I>kw• and then 
average to obtain 

s(k, ro) h"' = L ·ine1 ~ pLdv. 
I ' 

Now, replacing P~w everywhere by the expres­
sion in (lla) and making the approximations 
* ~* s ~s 

E1 ~ E: and J.Lkw ~ J.Lkw· which are completely 
justified within the scope of the treatment used 
here, we reduce this relation to the form 

·- 1 ~~ 4:rte-~ · { ')</2 k' ~· 
I e (k, (J)) 12 I koo = 2 j L ---i ~ gL, I .k/2 = k' I flkf2+k'. oof2+ro' 

i 

k/2 + k' ~; } + I k/2 + k' I f!k/2-k', ro/2-ro' 

X dv 12 I k/2+k', ro/Hro'h/2-k', '"/2-oo'dk' dro'. (13) 

It is thus obvious that the electric field fluctua­
tions in a weakly turbulent plasma can be repre­
sented as oscillations [in a medium with dielectric 
constant €] produced by a noise source whose in­
tensity is given by the right side of (13). If the 
latter is neglected the turbulent motion represents 
an ensemble of oscillations with characteristic 
frequencies wk given by the equation 'E ( k, wk) = 0. 

3. ARBITRARY OSCILLATIONS 

Obviously, the analysis of a plasma in a mag­
netic field in terms of Langmuir oscillations alone 
is highly approximate; in a more precise analysis 
it is necessary to take account of the perturbation 
of the magnetic field. Turning again to the Fourier 
representation, in the general case (2) is replaced 
by 

_!J..._!._('{(Ek'w' + ..!:_[VHk'u>'l)Fk-k' w-oo' m; av j c . 

- ((Ek'ro' + ~ [vHk'ro'l )Fk-k', oo-oo)}dk'dro'. (14) 

Equation (3) is replaced by Maxwell's equations 

i [kHkrol + i ~ Ekro =~Lei ~vFLdv, (15) 
; 

i [kEkrol- i (rojc) Hkoo = 0. (16) 

We first consider a uniform plasma that is sta-
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tionary on the average. It is assumed that the 
plasma is in a weakly nonequilibrium state so that 
waves are excited only in the transparent region, 
where the linear growth rates are small compared 
with the frequency. To avoid repeating the calcu­
lations given in the earlier section and to demon­
strate another means of forming the chain of 
coupled equations we make use here of the Wiener 
method of expanding a stationary random process 
in powers of the Brownian motion. 

According to Wiener [B] any stationary random 
fluctuation (in our case, say the electric field E) 
can be expanded in an orthogonal functional of the 
Brownian motion: 

E =Eo+ E1 + E2 + ... ; E0 =<E), 

E1 = ~ E1 (k, ro) e-iwt+ikr p (k, ro, o:) dkdro, (17) 

E2 = }- ~ E2 (k, ro; k', ro') 

x e-i(w+w'll+l<k+k')rp ( k, ro, o:) p (k', ro', a) dkdrodk' dro' 

- }- ~ E2 (k, ro; - k, - ro) dkdro (18) 

etc. Here a is a variable that enumerates the 
Brownian trajectories and p is the displacement 
of the Brownian particle, which simulates our 
random process. The single property of this 
Brownian motion used in the expansion given above 
is the correlation relation: 

< p (k, ro, a) p (k', ro', o:)) 

::=~p(k, ro, o:)p(k', ro', a)da=b(k+k')b(ro+ro'). 
(19) 

It is evident from Eqs. (17)-(19) that in retain­
ing E1 only we are assuming that the modes are 
independent of each other; taking account of second­
order terms corresponds to -taking account of the 
first nonvanishing correlation between different 
modes, i.e., the triple correlation, etc. Thus, in 
the approximation used in the preceding section we 
neglect higher terms starting with E3• 

Substituting the expansions for E, H and F in 
the kinetic equation, multiplying by p ( k, w, a), 
p (k, w, a )p(k', w', a) etc., and integrating over a, 
we obtain a chain of equations for E1, H1 and F1 : 

F{ (k, ro; v) = igLft{ EI(k, ro) + ~ [ vHt(k, ro) ]} 

+ igL ~{Ed- k', - ro') 

+~[vHI(-k', -ro')]}Ff(k', ro'; k, ro; v)dk'dro' 

+ igkw~ {E2 (k', ro'; k, ro) 

+~[vH2 (k', ro'; k, ro)]}F;(-k',-ro';v)dk'dro' 

+ . . (20) 

f~(k', ro'; k, ro; v)=igk+k', "'+"'·fb{E 2 (k', ro'; k, ro) 

+ ~[vH2 (k', ro'; k, ro)]}+igk+k', w+w·{(Edk', ro') 

+ ~ [ vH1 (k', ro')])1 f 1 (k, ro; v) + (E1 (k, ro) 

+ } [ vHt(k, ro)J) ft(k', ro'; v)}+ ... , (21) 

where the dots denote higher order terms that have 
been neglected. We note, however, that for accu-: 
racy to terms of higher order one can replace F{ 
in the last term in the right side of Eq. (20) by 

igkw~ { E1 ( k, w) + c- 1 [ V x H1 ( k, w ) ] } . 

If higher terms are neglected in the expression 
for <I Ekw I> and it is assumed that <I Ekw I> 
= I E1 ( k, w) 12 comparing (20) and (21) with (7) and 
(8) one notes that the corresponding expansions are 
not completely identical, although they are very 
similar. Since the correlation-function method is 
based on a smaller number of assumptions, it 
should evidently be given preference. However, 
the analysis of the structure of the higher order 
terms of the expansion is facilitated by the Wiener 
method by virtue of the simplicity of the scheme 
used for constructing the chain. 

We determine F 2, E2, and H2 from (21) taking 
account of Maxwell's equations and substitute the 
resulting expression in (20), thereby obtaining an 
equation that represents a generalization of (11) t0 
the case of arbitrary waves: 

+ i 2} ~ (gLA (k'ro') v) 4:~, (!Lk'-k.w'-wbk'-k.w'-w) 
s 

+ gL• (bk'-k,w'-w[l~'-k,w'-w)} h•-k,w'-wdk'dro', (22) 

where the corresponding quantities are given by 
the relations 

F{ (k, ro, v) = i(:LL{E 1 (k, ro )+ c-1 [vH 1 (k, ro) ]} 

= i(:LLbkwE(k, CD), 

(23) 

(24) 

where bkw =akw + k(v·akw)/w- (k·v)akw/w 
and akw is a unit polarization vector 
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hw<'l (k- k') 6 (w -w') (akw)a (a~c.u)!l = (£, (k, w) E~ (k', w')). 

Gjs b' The effect of the operator kw on an ar ttrary 
vector function of velocity y ( v) is given by 

· i 4:rtes { i ( kv) k i } G/Ly (v) = <'lisgkwY (v) + (;)"" !1-kw I - w + 00 (!1-kwv) 

X .A (k, w) ~ v (gLy (v)) dv, (25) 

where the matrix A is defined by 
c2 c2k2 -1 

A= II Ea1~ + 2 kakp - - 2 Oapll , Eaf3 is the 
1-' w w 

dielectric tensor 

Ea,s (k, w) = <'la(J + ~ ~ ~ ejVaf1~w {e/3 (I - ~) + ~ v~} dv, 
i (26) 

and e13 is a unit vector along the {3 axis 
(/3 = x, y, z). 

In finding A we again must add an imaginary 
part to E to take account of the damping of the 
triple correlation function. 

Using the relation (24) between F 1 and E 1 and 
taking account of Maxwell's equations (15) and (16) 

it follows that the motion of a weakly turbulent 
plasma can be represented in the form of an en­
semble of waves with electric field given by 

( w2 ~ ) 
~ k26,13- C2 e.,[l- k,k[l Ell (k, w) = 0, (27) 
B 

where 'E a{3 is the dielectric tensor of the plasma 
with oscillations taken into account: 

For a given k it follows from (27) that modes 
can only be excited at one of the characteristic 

frequencies w~ that satisfy the dispersion equation 

det 1: k2<'l,;,- w2c-2~,,,- kakr, II = o, (29) 

with each characteristic frequency corresponding 
to a completely determined polarization vector, 
ai(k), which is assumed to be real in the trans­
parent region being considered. 

Thus, the correlation function 
< Ea ( k, w) E$ ( k', w' ) > in a stationary uniform 
plasma can be written in the form 

(E,_(k, (1))/.:;,(k', (!)')) 

. ~a~a~l 1(k)o(k-k')6(ul-(1)')6(w-w~), (30) 

where the summation is taken over all characteris­
tic frequencies associated with a given wave vector 
k. 

Absorption at the walls can have a strong effect 
on the noise amplitude in a transparent region so 
that it is desirable to take account of any small 
inhomogeneity of I ( k) in space as well as any 
weak time dependence. The pair correlation func­
tion in weakly nonstationary inhomogeneous motion 
of a plasma differs from (30) by a small ''smear­
ing'' of the 6 -function and, more important, by the 
addition of small imaginary corrections propor­
tional to the time and space derivatives of I ( k). 
These corrections can obviously be neglected in 
the expression for 'E. 

* * We now multiply (15) by Ek'w', (16) by Hk'w' 
and subtract one from the other; from the re­
sulting expression we subtract the analogous com­
plex conjugate relation, interchanging k, k' and 
w, w'. The final expression is averaged over the 
statistical ensemble. Taking account of (24) and 
(28) and the fact that the derivatives of the cor­
relation function <Ea( k, w) E~ ( k', w') > are 
8/at = i ( w - w') and \7 = i ( k - k') we obtain an 
expression for the energy balance 

oW jot+ div S = - (wj4:rt) Im (aea) I (k), (31) 

where the wave energy W is 

W = s~ {:w (wE*eE) +<H*H)} 

I (k) { a ~ c2k2 c2 2} 
= 8:rt aw (waea) + (;)2- (;)2 (ka) ' (32) 

while the energy flux S is given by the relation 

{
cz c2 <l ~ } I (k) 

S= wk-,i)a(ka)-a]{(waea) -8it. (33) 

In the expressions for W and S, 'E corresponds 
to the hermitian part of the dielectric tensor so 
that the scalar quantity (a ·Ea) can be taken as 
real while the differentiation with respect to w 

and k is carried out for fixed a. 
Substituting in the vector equation (27) E = aE 

and multiplying by a, we have 

l5 =::= (tJ 2c- 2 (a ~a) + (lka)2 - k2 = 0, (34) 

whence, under the assumption that the antihermitian 
part of the dielectric tensor is small, we find the 
growth rate 

~ ~ { a ~ c2 c2 l-1 
0(••-Im(aea) -J- (waea)+ 2 k2 --c;(ka)2 1 • (35) 

((J) w (t)"' ) 

Assuming that the energy flux can be written in 
theform S=UI(k),where 
U = -( 8D/8k) ( 8D/8w)- 1 is the group velocity of 
the wave, we rewrite (31) in the simpler form: 

Dl (k) 'cit i- U (k) VI (k) = 2y I (k). (36) 
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An equation of this type, which plays the role of 
a wave energy transport equation, should actually 
be written for each of the characteristic frequencies 
associated with a given wave vector. Similarly, we 
could obtain a momentum balance equation from 
(15) and (16). But this equation is not necessary 
since the self momentum of the electromagnetic 
field ( E x H) / 4rrc is negligibly small compared 
with the particle momentum (if the plasma density 
is not low) while the particle momentum can be 
expressed much more simply in terms of the aver­
age distribution function. 

Equations (22) and (36) together with the equation 
for the averaged distribution function represent a 
closed system of equations that describes a turbu­
lent plasma. It is evident from (36) that a stationary 
state (on the average) is achieved in an infinite uni­
form plasma when y = 0. A peculiar dynamic equi­
librium must obtain under these conditiops: y 
cpmputed in the linear approximation for a given 
f~ can be nonvanishing for various values of k, 
corresponding to growth (or damping) of waves by 
virtue of the acquisition (or loss) of energy from 
the fundamental (scale-size) turbulence. But in 
this case each mode exchanges energy with other 
modes in such a way that its energy is not changed 
on the average. 

We have taken account of only the first non­
vanishing mode interaction. The associated pro­
cesses are the decay of a wave k into two waves 
k' and k - k' and the combination of waves k' 
and k - k' into a wave k. If the noise level is 
small, in which case the difference between E and 
'E can be neglected, these equations become the 
equations of the quasi-linear approximation. [ 3,4] 

In concluding this section we note that the ten­
sor E introduced above is a real dielectric tensor 
for a weakly turbulent plasma for arbitrary small 
oscillations. Any additional wave introduced into 
the plasma from an external source can be treated 
as a correction to I ( k). The electric field of this 
wave propagating in the plasma must also satisfy 
(2 7); if its intensity is small its contribution in 
(22) can be neglected and the corresponding dis-
persion equation is again given by 'E. 

4. EFFECT OF OSCILLATIONS ON THE 
AVERAGED DISTRIBUTION FUNCTION 

We now consider the wave interaction term Sj 
in (1), which gives the averaged distribution func­
tion. Taking account of (24) and the fact that the 
vector b can be regarded as real in a weakly non­
equilibrium plasma we have 

- b (k,w) (fL{'w'b (k,'w'))*} 

X E (k,w) E* (k' ,w') dk dk' dw d'w 

where w = ;:;k. 
In the case of arbitrary oscillations we have 

b = k/k and this relation assumes the simpler 
form: 1 l 

ei a 1 { k ~ i 1 ~i 
Si = m. av j 7i Im f!kwi (k) + Ik vI (k) Re f!kw 

I • 

(37) 

+ _1__ ~ R [a! (k) a}:i:{w -vI (k) afiL -_I<_ ~i vI (k)]} dk 
2 k e at aw ok k fl kw ' 

(38) 
~j ~j 

where J.Lkw = (k·J.Lkw) /k. 
Formally Eq. (1) is in the form of the Boltz­

mann equation with a collision integral Sj; actually, 
however, it is much more complicated. 

The analysis given above does not contain any 
fundamental difficulties for generaliz:Jtion to the 
case of an inhomogeneous plasma. In a weakly in­
homogeneous plasma ( scale size of variations in 
temperature and density appreciably greater than 
the wavelength) we can again expand the field in 
a Fourier integral in the sense of the quasi-classi­
cal approximation. If the inhomogeneity is intro­
duced in the linear approximation the frequency 
in the expression for E and in the dispersion equa­
tion contains corrections proportional to the 
gradient of the averaged distribution functions. 
These corrections are very important for drift 
(convective) waves, which are specifically char­
acteristic of an inhomogeneous plasma, but can 
evidently be neglected for the usual waves that 
propagate in a uniform plasma. Furthermore, 
when the inhomogeneity is introduced the expression 
for Sj contains additional. terms that are propor­
tional to the gradient of f~; to some degree, these 

!)In the quasi-linear approximation for a uniform plasma 
this expression differs from the corresponding relations in ['] 
and [•] by the presence of the av at term; this difference 
arises because the function fJ is defined somewhat differ­
ently. In our case fJ is simply the mean value of fi; for ex­
ample, the wave momentum is taken into account in fJ. 
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terms reflect the nonlocal nature of the wave-par­
ticle interaction. Thus, in the general case Sj is 
an operator that operates on both v and r. Hence 
the solution of the kinetic equation involves con­
siderable difficulties and specific approximations 
of its solution must evidently be chosen to fit a 
particular problem. 

Nevertheless, some general qualitative conclu­
sions can be drawn on the basis of the form of the 
kinetic equation. In a strong magnetic field [the 
characteristic time i, in which the wave interac­
tion causes an appreciable change in the averaged 
particle distribution function, is appreciably greater 
than the cyclotron frequency Oj = ejH/mjc 1 Eq. (1) 
can be expanded in reciprocal powers of Oj. This 
means, that in describing the averaged motion of 
particles across the magnetic field we can use , 
equations of the hydrodynamic type; these are ob­
tained from (1) by multiplying by v and integrating 
over velocity. In this case the right side of the 
equation of motion for a particle of type j will 

contain a force Rj = J mjVSjdV due to the inter­

action with the waves. In a two-component plasma, 
consisting of electrons and ions of one kind, Rj 
can be written in the form Rj = R 0/2 ± Rie, where 
R 0 is the total force acting on a plasma while Rie 
is the frictional force exerted on the ions by the 
electrons by virtue of the waves. The force R0 is 
obviously giveh by R 0 = < pE + c- 1 ( j x H)> where 
p is the charge density and j is the current den­
sity in the waves. Using Maxwell's equations and 
neglecting the self momentum of the field this quan­
tity is reduced to the divergence of the Maxwell 
stress tensor. 

As faras the friction force Rie is concerned 
we see that its component along the density gradient 
can easily be balanced by the electric field pro­
duced by a small shift of the electrons with respect 
to the ions and is not important; the component 
across the density gradient leads to plasma dif­
fusion. Thus, the anomalous diffusion of a weakly 
turbulent plasma, is caused by the electron-ion 
"friction," very much in the same way as is the 
case of collisions in an ordinary plasma. This 
fact is very important and must always be kept in 
mind in investigating the effect of any form of 
oscillation on plasma diffusion. 

As an example w~ consider the particular case 
in which the gradient I can be neglected in the ex­
pression for Sj [and consequently in (36) 1. Evi­
dently R 0 = 0 so that the diffusion effect above 
remains in the equations of motion of the oscilla­
tions. To simplify the calculations we limit our­
selves to the case of longitudinal oscillations. 

From the equation of continuity we have 

~ (w - kv) F1(k, w, v) dv 

(39) 

so that from (38) 

1 \' { ~ a1 (kl a£,} 
R1 = - Sn .\ k 2 Ime1 I (k) + at Re aw dk, (40) 

where 

whence 'E = 1 + l:)'Ej. Substituting everywhere in 
j 

accordance with ( 36), 

aJ ~ ~ ~ 
at= 2yi =- 2 Im eRe (ae!awt1I, 

we find for a two-component plasma 

1 \' { ~ iiB; . ~ a£.} 
R;.=-Re;= 4n.)k Ime.Re-aw-Ime;Re aw 

( a~ )-1 
x Re :w I (k) dk. (41) 

It is evident that these oscillations cause plasma 
diffusion only if both electrons and ions are involved. 
For example, if we have high frequency oscillations 
only (ions assumed fixed so that 'Ei = 0) the friction 
force Rie and the diffusion flux both vanish. In 
other words, these oscillations correspond to elec­
tron-electron collisions only and can not cause 
plasma diffusion; on the other hand individual elec­
trons, can be easily shown to diffuse by virtue of 
these oscillations. [s,1o] This example given shows 
that it 'is hazardous to extend to a total plasma 
conclusions that refer only to a single particle, 
neglecting the correlation of its motion with the 
motion of the other particles. 

5. CONCLUSION 

In this paper we derive equations that describe 
the behavior of a weakly turbulent plasma in a 
magnetic field, taking account of the nonlinear de­
cay of waves into two waves and the fusion of two 
waves into one, i.e., the strongest interaction be­
tween low-amplitude waves. It is shown that the 
turbulent motion of such a plasma can be described 
in terms of an ensemble of waves; the wave dis­
persion equation in turn depends on the wave 
spectrum. 

The behavior of the averaged distribution func­
tion is described by a special collision integral. 
This collision integral takes account of the finite 
distance over which the particles interact with waves 
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(this. distance is of the order of the mean Larmor 
radius of the particles) and is an operator that acts 
on both the velocity and coordinate variables. 

To simplify matters we have neglected the ther­
mal Coulomb noise and collisions between particles. 
In principle, by considering the fluctuation of the 
distribution function due to the discreteness of the 
medium it is easy to include thermal noise in the 
analysis and also to introduce collisions. 

We are indebted to V. D. Shafranov for valuable 
discussions of this work. 
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