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The role of nuclear spin diffusion in magnetic relaxation and dynamic polarization of nuclei 
in nonconducting crystals containing paramagnetic impurities in investigated. The presence 
of a diffusion barrier due to the fact that the Zeeman frequencies of nuclei located near para­
magnetic ions differ strongly from each other, thereby impeding diffusion, i.s taken into ac­
count. During dynamic polarization the diffusion barrier should be important for not too pow­
erful microwave fields and should diminish the nuclear polarization. 

l. Nuclear spin diffusion plays an important role 
in magnetic relaxation and dynamic polarization 
of nuclei in nonconducting crystals containing para­
magnetic impurities. The role of spin diffusion in 
nuclear relaxation has been considered in a number 
of papers, [l-5] in which [2•3] an expression has been 
obtained for the relaxation time of the total nuclear 
magnetic moment of a sample without, however, 
taking into the account the so-called diffusion bar­
rier. The diffusion barrier is caused by the fact 
that the frequencies of nuclei situated near para­
magnetic ions differ strongly from each other 
thereby impeding diffusion. 

In a previous paper [5] (which will henceforth 
be referred to as I) we considered spin diffusion, 
taking into account the presence of a diffusion bar­
rier. The final result obtained in I for the relaxa­
tion time did not agree well with experiments at 
low temperature, however. 

2. In I, a solution was sought for the differential 
equation for the z component ( z axis directed 
along the constant external field ) of the nuclear 
magnetization M in steady state and in the absence 
of a saturating alternating field [see Eq. (5) in I]. 
A solution was found satisfying the boundary con­
dition M ( oo) = 0. In particular, for the asymptotic 
form of this solution we have 

M (r) = M 0F fr (1) 

where M0 is the equilibrium value of M. 
In order to determine the constant F, a second 

boundary condition for small values of r is re­
quired. 

The relaxation time Tn of the total nuclear mag­
netic moment of the sample is expressed through F: 

Tn = 1 j4nNDF, (2) 

where N is the concentration of paramagnetic 
centers and D is the nuclear spin diffusion co­
efficient. Actually, the nuclear spin diffusion co­
efficient is a function of the distance r from the 
nearest paramagnetic center. The functional form 
of D ( r ) can be determined if use is made of the 
theory of cross relaxation. The asymptotic form 
of M ( r ) will again be given by Eq. (1) since the 
value of D(r) is constant for large r. In what 
follows we shall let D stand for the constant value 
of D(r) for large r. 

In order to determine the constant F accurately 
it is necessary to proceed as follows: one must find 
a solution to Eq. (5) in I, with a diffusion coefficient 
depending on r, that satisfies the conditions M( 0) 
= M0 and M( oo) = 0. By comparison of the asym­
ptotic form of this solution with Eq. (1) we find F. 

We assumed in I that the dependence D(r) 
could be approximated by the step function 

D (r) = 0 for r < d, 

D(r) = D for r>d. (3) 

In this case it is necessary to solve Eq. (5) in I 
with the boundary conditions dM/dr = 0 for r = d 
and M( oo) = 0. This gives us the function F(b, d) 
expressed by Eq. (20) in I. In the limiting cases 
we have 

F = b for d~b, (4a) 
F = C j3Dd3 = 1,6b4 / d3 for d~b; (4b) 

b is equal to the distance from the paramagnetic 
ion to which direct relaxation of the nuclear spin 
(by means of dipole-dipole interaction with the 
spin of the paramagnetic ion) plays a greater role 
than spin diffusion (in the case of no diffusion bar­
rier); C/2r6 is the probabiHty (per unit time) of 

1540 



SPIN DIFFUSION OF NUCLEI 1541 

a relaxation reorientation of the nuclear spin lo­
cated a distance r from the paramagnetic ion. The 
magnitude of b is given by the formula 

b = 0.68 (C I D)'i •. (5) 

Thus, by applying the model of a step function 
for D(r) the problem comes down to a determina­
tion of an effective radius d for the diffusion bar­
rier. If d « b, the result does not depend on d and 
coincides with the result [2•3] given in previous work 
by the author and de Gennes. 

Our treatment is correct for the fulfillment of 
the condition 

a~ max (b, d)~ R = (314nN)'ia, (6) 

where a is the distance between nearest-neighbor 
nuclear spins and R is the radius of a sphere fit­
ting around one paramagnetic ion. If a nuclear re­
laxation independent of the paramagnetic ion also 
occurs, with a partial relaxation time Td, the total 
nuclear relaxation time Tn will be given by 

T~1 = T-;/ + 4nNDF. 

3. We introduce the quantity o: 
(7) 

6~(r./rn)"a 

6 ~ (yelireH I rnkT)" a 

for -r> r., 
for -r<T2 , 

(Sa) 
(8b) 

where T is the spin-lattice relaxation time of the 
paramagnetic ion, T2 is the nuclear transverse 
relaxation time, Ye and Yn are the absolute values 
of the gyromagnetic ratios of the paramagnetic ion 
and the nucleus, and a = Y4 to %. 1> 

In I we took d = o. At the temperatures of 
liquid hydrogen and helium (where b « d), this 
leads to values of Tn markedly in excess of the 
experimental data of Bloembergen. [1] Further, 
when the diffusion barrier is not taken into ac­
count the temperature dependence of Tn is Tn 
~ r 114• With account taken of the diffusion barrier 
in the step-function model with d = o we obtain 
Tn ~ T in the limiting case of low temperatures. 
But according to experiment at low temperatures 
Tn ~ rf3, where {3 = 0.5 to 0. 7. Thus, by taking 
the diffusion barrier into account according to the 
step-function model the theoretical result is 

l)If we take a = 1/3, then o will be of the order of the dis­
tance from the paramagnetic ion at which the shift of the nu­
clear Zeeman frequency equals the nuclear resonance line 
width. If we take a = 1/4, then o will be of the order of the 
distance at which the difference in the Zeeman frequencies of 
neighboring nuclei (situated along one radius) equals the line 
width of the nuclear resonance. In view of the approximate na­
ture of our treatment there is no point in distinguishing between 
these two lengths; we can use their mean, i.e., take a= 7/24. 

changed in the required direction, but by too great 
an amount. 

This discrepancy can be analyzed. Let us as­
sume the inequality b « o. For distances r sat­
isfying the condition b < r < o, the effect of direct 
relaxation is weak (since r >b), and hence it is 
impossible to neglect the role of diffusion (although 
D(r) does diminish, beginning with values of r of 
the order of o). It is clear from this that by ap­
plying the step-function model with d = o, we tend 
to overestimate the role of the diffusion barrier at 
low temperatures (leading to values of Tn that are 
too large and to too strong a temperature depend­
ence ). Hence, strictly speaking, it is necessary to 
solve Eq. (5) in I with a function D( r) calculated 
with the aid of the theory of cross relaxation. It is 
obvious that the value of F for b < o obtained in 
this way will be greater than the expression ob­
tained from Eq. (4b) by means of the substitution 
d = o, and thus the agreement between theory and 
low-temperature experiments will be improved. 
However, the analytical solution of Eq. (5) in I 
with a variable diffusion coefficient presents great 
difficulties. It makes sense to solve Eq. (5) of I 
numerically for values of the parameters corre­
sponding to the conditions of an actual experiment. 

We note, however,. the following fact: we shall 
use the model of Eq. (3) but take 

d =min [6, (M)'f,J, (9) 

which gives 

d = (M)'!. for b < 6. (9a) 

Then, applying Eqs. (2) and (4b) we obtain agree­
ment between theory and experiment both with re­
spect to the temperature dependence (Tn ~ r 518 ), 

and with respect to the order of magnitude of Tn 
at liquid hydrogen and helium temperatures. Qual­
itatively, Eq. (9a) can be understood in the follow­
ing manner: b < o, then as b decreases diffusion 
must be taken into account up to smaller distances. 

4. Samples containing polarized protons are of 
great interest for nuclear physics and the physics 
of elementary particles. The most promising 
method for polarizing protons appears to be the 
method of forced dynamic polarization (the so­
called solid effect). [G-10] 

Consider a crystal with a small 0Qncentration 
of paramagnetic ions (e.g., a dilute paramagnetic 
salt or a crystal containing free radicals ) to which 
is applied a strong constant magnetic field H. The 
principal interaction between the electron spins 
(for brevity we mean by "electron spin" the spin 
of the electron shell of the paramagnetic ion) and 
the nuclei will be dipole-dipole. In this case, as 
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is known, the Overhauser effect is not operative, 
i.e., the nuclei are not polarized when the electron 
paramagnetic resonance is saturated. 

Now if we apply to the crystal an alternating 
field of frequency we + wn or we - Wn ( we and wn 
are the electronic and nuclear Zeeman frequencies ) , 
then a quantum of the alternating field will cause a 
simultaneous reorientation of the electronic and 
nuclear spins. These "forbidden" transitions are 
possible because of the mixing of the wave functions 
caused by the static part of the dipole-dipole inter­
action between the electronic and nuclear spins. In 
practice, one usually operates with a fixed micro­
wave frequency and varies the magnitude of the 
main field H. "Forbidden" transitions occur for 
values of H equal to H+ or H_, where 

(10) 

H0 is the resonance value of the field, correspond­
ing to ordinary electron resonance: 

H0 =wjy,. (11) 

The electronic spin interacts strongly with the 
lattice. Therefore the Boltzmann excess of elec­
tron spins directed oppositely to the external field 
will be constantly re-established. From this it is 
clear that each electronic spin can bring about the 
reorientation of a rather large number of nuclear 
spins, effecting a polarization of the nuclei. This 
polarization interferes with the nuclear relaxation 
by which equilibrium between the nuclear spins and 
the lattice is re-established. The role of relaxa­
tion becomes relatively less important as the am­
plitude of the alternating field is increased. In the 
absence of nuclear relaxation for a forbidden tran­
sition corresponding to the field H+, the nuclear 
magnetization increases Ye /yn -fold; for a forbid­
den transition corresponding to the field H_, the 
magnetization increases in absolute magnitude by 
the same factor but changes sign. 

The probability of a forbidden transition de­
creases with increasing r (the distance between 
a nucleus and a paramagnetic ion) as r- 6 in view 
of the fact that the state-mixing by the dipole­
dipole interaction is proportional to r- 3. Hence 
for small concentrations of paramagnetic impurity 
only those nuclei situated close to paramagnetic 
ions will be polarized. Because of the emergence 
of a gradient of nuclear magnetization (or a nu­
clear spin temperature), diffusion of the excess 
nuclear spins will occur, resulting in a distribution 
of the nuclear polarization over the entire crystal. 

A calculation of spin diffusion in dynamic polar­
ization has been carried out by Winter. [11] He did 
not account for a diffusion barrier, however. We 

shall now do this, treating the case of nuclear spin 
%. since all the experiments have been done on 
protons or F 19 nuclei. We shall also limit our­
selves to the case of effective ionic spin of Y2• 

5. The z component of the nuclear magnetiza­
tion M ( r, t) satisfies the equation [a, 11] 

aM 1 ~ Tt = T (Mo-M)+ Dt.M- C LJ \ r- rn \-6 (M- M 0) 
d n 

Here rn is the radius veetor of the n-th para­
magnetic ion, and A is the probability (per unit 
time ) for the reorientation of the nuclear spin by 
the alternating field at a frequency equal to the 
nuclear Larmor frequency. Moreover, C and r ± 

are given by the formulas 

C=3(1ire) 2 jiO-rH2 , r±=rtreH12-rG(H-H±)C, (13) 

where 2H1 is the amplitude of the alternating field 
exciting the forbidden transitions, applied perpen­
dicular to the de field, and G( H- H0 ) is a function 
giving the line shape of the electronic resonance 
line, normalized to unity. It is to be noted that 
we are considering the case for which the transi­
tions at H+> H0, and H_ do not overlap, i.e., when 
the nuclear Larmor frequency significantly ex­
ceeds the width of the electron resonance. In Eq. 
(12) the upper sign is chosen for the case of the 
H+ transition and the lower sign for the H_ tran­
sition. 

By W we symbolize the probability (per unit 
time ) of an allowed electronic transition in an 
alternating field of amplitude 2H1 and with the 
same departure from the corresponding condition 
for exact resonance as for the forbidden transition 
we are considering. Then we can write 

I'= 2W-rC == sC, 

where s is a parameter characterizing the degree 
of saturation of the resonance: 

s = 2W-r = nreHi-rG (H- H±)· 

From now on we omit the ± sign on r. 
We introduce the following quantities 2>: 

7J=o.6s(ctrr·=b(c~r-)'". F=F(E,d). (14) 

Finally, we symbolize by rol the total nuclear mag­
netic moment of the sample 

2lMore generally, if the step-function model for D(r) is not 
usec!o we understand by F the result obtained by the exchange 
b -> b in the dependence of F on b. 
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Let the condition 

a ~ max (fi, d) ~ R 

be fulfilled. Then, according to I, it follows from 
Eq. (12) that ~ satisfies the equation 

aM -[C±r.r/rn J l))?o-1))? Tt = 4nNDF C+r ~o-~ + -T- -2A~. 
• d (15) 

6. Since we are interested in dynamic polariza­
tion of the nuclei, we consider the case A = 0. 
Equation (15) gives for the stationary value of the 
magnetic moment ~s and for the time Ts for the 
establishment of the stationary state the following 
expressions: 

1))?5 T;J1 + 4nNDF(C + r)-1 (C ± r.r I in) 

\))?o r;/ + 4nNDF 

T;1 = T;/ + 4nNDF. 

Introducing the enhancement factor for nuclear 
polarization 

'f] = ~s/~o-1 

(16) 

and using Eq. (7), we can rewrite Eqs. (16) in the 
following way: 

r;/ +4nNDF 

T;J1 +4nNDF ' 
'f]='f]m 

'fJm = ±re/rn-1. 

I' 4nNDF 

r;/ +4nNDF 

(17) 

Equation (17) shows that YJ increases with de­
creasing C and increasing Td; this is easy to see: 
a decrease in C means a diminution in the role of 
nuclear relaxation due to paramagnetic ions, and 
an increase in Td means a decrease in the role of 
relaxation not caused by paramagnetic ions. Such 
a decrease in the role played by nuclear relaxation 
should enhance the dynamic polarization effect. 

In the limiting case d « b, we have the result 
obtained earlier [B,11]: 

r 8,5 N (C + I')'i•D'/, 
'f] = 'fJm c + r r;/ + 8.5 N (C + I')'I•D'I• ' 

(18) 

Since r increases with increasing microwave 
power, b will significantly exceed d for suffi­
ciently high powers, and the diffusion barrier will 
cease to be important. When the microwave power 
is not too high, the diffusion barrier will become 
important and will diminish the nuclear polariza­
tion. 

Note added in proof (November 24, 1962). According to the 
preliminary results of new measurements by Jeffries (private 
communication), T n is proportional to 'T at helium tempera­
tures. This is in agreement with our results (Eqs. (2) and (4a)] 
for a step function with a radius of the diffusion barrier given 
by Eq. (Sa). Thus, if these preliminary results are confirmed, 
there is no necessity for carrying out the numerical calcula­
tions we referred to in Sec. 3 of this paper in order to obtain 
agreement between theory and experiment (particularly, to ob­
tain the correct temperature dependence for T n}· 
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