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It is shown that for arbitrary spin there is a phase transformation which leaves invariant all 
those observable quantities which are unchanged when the spiralities of all the particles par­
ticipating in the reaction are changed. For the special case of spin ~. the transformation is 
related to the Minami ambiguity. Multiple scattering destroys the invariance because of the 
Thomas precession of the spin. 

IN the well known paper of Minami [1] ( cf. [2]) it 
was shown that the cross section for scattering of 
a spin-~ particle by a spinless target is invariant 
under interchange of phases of all pairs of states 
corresponding to the same value of the total angu­
lar momentum: 

However, the Minami transformation changes 
the sign of the polarization, and so the resultant 
two-valuedness is removed if this sign is known. 

(1) 

In a paper by Puzikov, Ryndin, and one of the pres­
ent authors, [3] it was noted that interchange of 
phases with a simultaneous change of their signs, 1> 

(2) 

changes neither the cross section nor the polariza­
tion, and can lead to an ambiguity in the phase shift 
analysis. Such an ambiguity is eliminated, for ex­
ample, by rotating the polarization by means of a 
magnetic field or by measuring the energy depend­
ence of the phases at low energies. 

In a later paper, Zastavenko [5] discussed 2> the 
problem of generalizing the transformation (1) to 
the case of higher spins and to relativistic par­
ticles. In all of this work the physical meaning of 
the transformation (2) was not made clear. It turns 
out that this transformation expresses a simple 
type of symmetry. 

Transformation (2) is simply the change in sign 
of the spirality of all particles (the projection of 
the polarization of the particle along the direction 
of its velocity). The simple fact that in experi­
ments on scattering which do not use external 

!)This substitution has been used recently in a paper of 
Nauenberg and Pais.[•] 

fields (or polarized targets ) , one cannot measure 
the sign of the longitudinal polarization leads to 
an ambiguity. In this form the statement is easily 
generalized to arbitrary spins. A more unex­
pected result is the generalization to relativistic 
systems, where a "relativistic rotation of the 
spin" destroys the symmetry and, at sufficiently 
low energy, results in a "fine structure" of the 
cross sections for multiple scatterings, computed 
on the basis of a "complete experiment." 

The transformation (1) can be written in matrix 
form: 

M -+(an,) M(an;). (3) 

Here M is the scattering matrix (in spin space), 
Oi and Of are unit vectors along the directions of 
the incident and scattered particle in the ems. 
Since a•oi,f = exp[i(a•oi,f)7T/2] = U(oi,f) is the 
operator which rotates the spin through an angle 1r 

about the axis Oi,f, Eq. (3) can be rewritten as 

(4) 

It is obvious without calculation that such a 
transformation changes the sign of the transverse 
polarization of the particles. Transformation (4) 
anticommutes with the space reflection, 

P (an)=- (an) P 

(where o is either of the vectors Oi or Of); it 
therefore changes the parity of the state. 

It is easy to see that the substitution (4) does 
not violate the unitarity condition 

i (M +- M) = 2k M+M. 

Furthermore it is clear that condition (6) is not 
violated by the substitution 

(5) 

(6) 

M _.- M+. (7) 

2)See also [•]. In [7] an incorrect derivation is given. This follows from the fact that MM+ = M+M be-
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cause of the unitarity of the matrix S = 1 + 2ikM. 
Transformation (7) consists of a change of the 

sign, transition to the Hermitian conjugate matrix 
in spin space and interchange of final and initial 
momenta. The signs of all spin components change. 
This transformation causes a change in sign of all 
phases, as can be easily seen by writing the scat­
tering matrix in the JM-representation, in which 
it is symmetric (because of the symmetry in time). 

The successive application of the two transfor­
mations: rotation of all spins through 1!' about their 
momenta and the transformation (7) gives inversion 
of the spirality of all the particles. 

For a particle with spin %. spirality inversion 
reduces to the substitution (2). The arguments 
given above are immediately generalized to the 
case of arbitrary spin. Only the form of the op­
erators changes. In particular, the rotation op­
erator U ( n) for a particle with spin S will be 
exp [ i ( S • n )11'], and its commutation relation with 
the space inversion operator has the form 

UP= (-1)2s PU. (8) 

In the case of systems of several particles, the 
spirality inversion must be carried out on each 
particle. In this case the rotation operator splits 
up into a product of operators acting on each of 
the particles. Thus for a system with integral 
spin the Minami transformation and spirality in­
version does not change the parity of the states, 
while for systems with half-integral spin the 
parity changes. 

If we consider any process occurring during the 
collision of an arbitrarily polarized beam with an 
arbitrarily polarized target, it is clear from the 
discussion that if one measures only the absolute 
value of the components of the polarization (in the 
initial and final states), there are four sets of am­
plitudes which satisfy all the experimental results. 
If the sign of the transverse polarization is deter­
mined in the experiments, only two sets are left. 3> 

To eliminate the remaining ambiguity one must 
measure the sign of the longitudinal polarization. 
To do this one must measure the pseudoscalar 
S • n. This can be done by switching on a magnetic 
field [measuring the scalar ( S • n ) ( H • n)], or an 
electric field-measuring the scalar ( S • n) ( E • ni 
x nf) -or, finally, by studying the dependence of 
the effects on energy [ ( S • n) is a scalar under 
time reversal]. 

3lThe sign of the polarization is determined usually if one 
knows the levels of the target nucleus (for example, in the 
scattering of nucleons by helium). 

Polarized beams are usually prepared by scat­
tering on targets, for various planes of scattering. 
If the particles are nonrelativistic, the polariza­
tion direction does not change in going from one 
system to another, and multiple scattering does 
not alter the conclusions given above. This is 
immediately clear if we note that the result of an 
n-fold scattering which starts with the scattering 
of an unpolarized particle, is described by the 
trace of the density matrix 

p=MM ... M M+ ... M+M+ 
....______.,____., '----..----- (9) 

n n 

and that the direction of the incident particle coin­
cides with the direction of the scattered particle 
from the preceding process. 

The situation changes if the particles are rela­
tivistic. Stapp [B] pointed out the role of this effect 
in multiple scattering processes. The polarization 
of the scattered particle which results from the 
first scattering (by a target at rest) is rotated 
through an angle Q (in the negative direction of 
the scattering angle) in going to the ems of the 
second scattering ( cf. the Appendix). Since the 
rotation through angle Q occurs about an axis 
normal to the plane of scattering, it does not com­
mute with the spirality inversion, so this effect 
removes all the ambiguities considered above. In 
this sense the Lorentz transformation plays a role 
analogous to that of a magnetic field switched on 
between successive scatterings. 

For spinless particles a second scattering 
gives no new information beyond that from the 
first scattering and does not remove the ambi­
guity in the sign of the phases which is connected 
with the transformation (7). For particles of spin 
Y2, the polarization resulting from scattering of an 
unpolarized beam is perpendicular to the plane of 
scattering. Thus the invariance of the asymmetry 
of the second scattering with respect to the trans­
formation M -- - u+ MU is not removed by the 
relativistic rotation of the spin. Breakdown of this 
invariance begins with the asymmetry of the third 
scattering. 

For particles with spin greater than %, the vec­
tor part of the polarization after the first scattering 
is again not changed by a relativistic rotation around 
the normal, but the tensor part of the polarization 
is not invariant under rotation. Thus in this case 
the invariance is already destroyed by the asymme­
try of the second scattering. 4> 

4lThis was discovered by Zastavenko[•] by a direct calcu­
lation. 
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We note that the invariance of observable quan­
tities which we have described does not occur at 
all if conditions are imposed on the scattering 
matrix which are incompatible with reversal of 
the spirality of all the particles. Thus, if in the 
matrix for scattering of particles with spin 0, ~. 
we assume that an odd number of the lowest phases 
are different from zero, the corresponding trans­
formation of phases cannot be carried out, and all 
quantities observed in a second scattering are dif­
ferent for all 2n sets of phases [9] (where n is the 
number of phases in the sequence s 1; 2, p 112, Pa/2• 

d3; 2, ••• ), which are compatible with the cross sec­
tion for scattering of an unpolarized beam. 

APPENDIX I 

RELATIVISTIC ROTATION OF THE SPIN 

Relativistic rotation of the spin was treated in 
a paper of Stapp. [S] This kinematic effect is noth­
ing other than the "Thomas precession," and is 
most simply described in Lobachevskil space, [ 10] 

as was pointed out in a recent paper of Wick. [11] 

The effect becomes completely elementary if we 
use the operation of parallel displacement in this 
space. [ 12 ] 

Because of the relation v2 = (p/m )2 = 1, the 
ends of the velocity four-vectors lie on the surface 
of a hyperboloid in a four-dimensional velocity 
space with a pseudo-Euclidean metric. The metric 
on the surface itself is defined so that if a is the 
"length" of the geodesic between two points, 
cosh a = y is the Lorentz factor corresponding 
to the relative velocity of these points. 

The transformation of the spin from one coor­
dinate system to another can be described as a 
parallel displacement of the three-dimensional 
spin vector along a geodesic on the hyperboloid 
passing through the two corresponding points. [ 12 ] 

Thus one can immediately show that a rotation of 
the spin in the lab system differs from the rotation 
in the ems by a rotation which is related to the 
parallel displacement along a hyperbolic triangle 
with vertices corresponding to the 4-velocity of 
the particle before scattering R1, the 4-velocity 
of the center of mass C and the 4-velocity of the 
particle after scattering R2• 

This rotation is equal to the hyperbolic defect 
~ (or the area of the triangle, if the curvature of 
the Lobachevskil space-the velocity of light, is 
set equal to unity): 

{jJJab = (jlc.m. -I Q I· 

The angle of rotation ~ can be written in vec­
tor form:* 

I sinQ I= ro I Ea~y8R1sCYR2s J, 
ro = 1 + ch a + ch b + ch c 

8ch2 (a I 2) ch2 (b / 2) ch2 (c 1 2) 

We note that 

sin2 Q / ro2 = I + 2 (RIC) (CR2) (R2R1)- (R1C)2 - (CR2)2 

- (R2R1) 2 =I+ 2chachbchc- ch2 a- ch2 b- ch2 c 

(a, b, c are the sides of the triangle). 
The vector of the rotation in each of the three 

systems is parallel to the three-dimensional vec­
tor product of the space parts of the two 4-veloci­
ties, differing from it by a factor w. This is the 
same as Stapp's result. 

In describing multiple scattering, it is most con­
.venient to perform the calculations in the lab sys­
tem; then in formula (9) one should insert the ma­
trix for rotation through angle ~ between each 
pair of matrices M. 

APPENDIX II 

TRANSFORMATION OF THE SCATTERING 
MATRIX AND OBSERVABLES 

We have considered the three transformations: 

M __.- M+, 
M __. u+lviU,' 

M __.- u+M+u. 

(a) 
(b) 
(c) 

Let us examine the effect of these transforma­
tions for the three systems. 

1) Spinless particle. We write the scattering 
matrix in the form 

Transformation (a) gives the relations 

a __.a, a__. :rt- a, 

2) Spin %. The coefficients in the scattering 
matrix 

are 
M =a+ b (an) 

a = ~ VOeta. (e-iM2 VI + P + et~ VI - P), 

b = f Voeta(e-tB/2V~+- p- et~/2 Vl - P) 

(where u is the differential cross section and P 
is the polarization), and transform according to 
the formulas 

*ch =cosh. 
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a _,. - a*, b _,. b*, a _,. a, p _,.- P, a->:rt-a 

under transformation (a), 

a _,. a cos 8 + ib sin 8 , 

a --a, P --P, 

b = - ia sin 8 - b cos 8' 

a _,. a, ~ -> 28 - ~ 

under transformation (b), and 

a_,.- a* cos8 + ib* sinS, b = ia* sin 8 - b* cos 8' 

p -• P, a-- :rt- a, 

under transformation (c). 
Under transformation (c) the transverse-longi­

tudinal components of the tensor relating the com­
ponents of the spin (in the plane of scattering ) 
before and after scattering change sign. The other 
components do not change. 

3) Nucleon-nucleon scattering. The formulas 
analogous to the preceding ones have the form 

M =fa [1 +(a1n) (a 2n)l +fb [1- (a1n) (a 2n)] 

++c [(a 1m)(cr2m) + (a11) (a21ll ++d [(alm) (a2m) 
" " 

-(all) (a21)1 + fe [(aln) + (azn)l; 

a = T'1' J/ai,_ (e-m J/1 + D + K + Q + 4P 

+ £1·3 J/1 +D + K + Q=4P), 

b = T'1, J/aei<a+yJ J/1 +- D- K- Q, 

d = 2-';, J/crei<a.+•) J/1 - D - K + Q, 

e = T'' J/aei" (e-i,8 J/1 + D + K +- Q + 4P 

- ei~ V 1 + D + K + Q - 4P). 

Here P is the polarization of an unpolarized beam, 
D is the depolarization in the forward hemisphere, 
K is the depolarization in the backward hemi­
sphere, and Q is the normal-normal component 
of the polarization correlation. 

For transformation (a) we have: 

a ---a', b ---b*, c ---c*, 
a--:rt-a, P---P, r---y, 

d - - d*, e _,. e', 
0 -+ - 0, e ~ - e; 

.for transformation (b): 

a _,.a cos 28 + ie sin 28, e _,.- ia sin 28 - e cos 28, 
~ __. 28 - ~. P __. - P; 

for transformation (c): 

a·~- a' cos 28 + ie* sin 28, 
b--+- b'' c ~- c*, 

a --~ Jt ------)> a, 

6->- 6, 

e __. ia sin 28 - e* cos 28 , 
d->- d*, 

y ->- y, 

8 _,.- 8. 

Under transformations (b) and (c), the longitudinal­
transverse and the transverse-longitudinal compo­
nents of the tensors change sign (coefficients which 
have not been written explicitly do not change ) . 

In triplet states the transformation (c) is asso­
ciated with the transformation of the phase matrix: 

s{l -- (2j + lf2 {S{l + 4f u + t) S~2 + 4 Yi u + 1) s{2}, 

S{2 -- 2 J/j (j + 1) (2j + 1)-2 (S{l- S~z) 

+ l4i (j + 1)- 11 (2i + 1r2s{z, 

st2 -- (2i + 1r2 {4i u + 1) s{l + s'2 - 4 Vi <I + 1) s{2}· 

Its elements are described by the phases and mix­
ing parameter: 

S{1 = cos2 8i exp (2ibj) + sin2 ei exp (2ibj), 

S'2 = sin2 ei exp (2ib/) + cos2 ei exp (2ibj), 

s{2= 1/2 sin 2ei [exp (2ibj)- exp (2ibj)]. 

Transformation (c) reduces to 

tJ+->- tJ-, E->- E + iCOt-1 2J/j (j + 1). 

The phases of singlet states and states with 
j = l do not change under transformation (c) and 
change under (a) and (b). 
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