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The radiation of ion-cyclotron and magnetohydrodynamic waves by the ions and electrons of 
a high-temperature plasma in a magnetic field is considered. The emission and absorption 
coefficients of the plasma and the equilibrium intensity of the radiation are determined. 

1. INTRODUCTION 

AN investigation of the study of ion-cyclotron 
( w ~ WHi) and magnetohydrodynamic ( w « WHi) 
waves by ions and electrons moving along a helix 
in a magnetoactive plasma is of interest for many 
problems in plasma physics. An experimental in
vestigation of the thermal radiation of plasma in 
the frequency region w ~ WHi enables us to deter
mine the temperature of the ion and electron gases 
and the plasma density. The radiation of ion-cyclo
tron waves was observed in the "Ogra" apparatus 
on passage of fast ions through a plasma [t], and 
in investigations of the low-frequency radiation 
due to solar corpuscular streams passing through 
the upper atmosphere of the earth [2]. 

Cyclotron radiation of "fast" ions (I vI » VTe) 
which move along a helix in an unbounded plasma 
was considered by Pistunovich and Shafranov [3]. 

In the present work we consider cyclotron radia
tion of ions having a velocity I vI on the order of 
the mean thermal velocity of the plasma ions VTi· 
In addition, we consider the Cerenkov radiation of 
the electron in the low frequency region 1>. The 
radiation intensity is determined with account of 
the cyclotron absorption of the radiated waves by 
the plasma ions and of Cerenkov absorption by the 
plasma electrons. The radiating and absorbing 
capacity of a plasma and the equilibrium radiation 
intensity are also determined for the investigated 
frequency regions. 

The expressions obtained for the radiation in
tensity of the individual particle can be used also 
to estimate the radiation intensity of clusters of 
charged particles passing through a plasma. If the 

!)Low frequency Cerenkov radiation of a "fast" charge 
moving along the axis of a plasma-filled waveguide was in
vestigated by Gorbatenko, Kurilko, and Fa'lnberg[• J. 

cluster dimension is smaller than the length of the 
radiated wave 7r: = c/ wn, where n is the refractive 
index, then the radiation intensity is proportional 
to the square of the total charge of the cluster 
(Ne) 2, i.e., to the square of the number of par
ticles in the cluster N2 (coherent radiation of the 
cluster). In the low-frequency case under consid
eration, the wavelength is large and therefore the 
radiation can be coherent even at relatively large 
cluster dimensions. 

2. CYCLOTRON RADIATION OF IONS 

An ion moving along a helix produces in a 
plasma a current whose density is equal to 

where 
vi (t) - drjdt, 

VII and v 1 are the components of the ion velocity 
Vi parallel and perpendicular, respectively, to the 
external magnetic field H0; r 0 = v1/wHi; WHi 
= eH0 /Me is the gyrofrequency of the ion. To ob
tain the intensities of the electric and magnetic 
fields produced by such a current we can use the 
previously obtained expressions (2 .10) from [5], 

where cyclotron radiation of the electrons was 
considered. For this purpose it is necessary to 
make in the indicated expressions the substitution 

VII --+ -VII • 

(the substitution Vii - -vii is not made under the 
a-function sign). 

As noted earlier [5], integration over k11 and k1 
(the components of the wave vector k parallel and 
perpendicular, respectively, to H0 ) is possible only 
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in the case of weakly damped radiated waves. It is 
known [6, 7J that in the frequency region w ;:;. WHi 
the damping of the normal waves (ordinary and 
extraordinary) is small if the frequency of the 
wave is not too close to the gyrofrequency WHi 
and if in addition the pressure of the ion gas Pi 
= n0Ti is much smaller than the magnetic pressure 
PH= Hij/87r. If w is close to WHi, then when PH 
» Pi only one wave propagates; the propagation of 
the other wave is impossible because of the strong 
cyclotron damping. When PH~ Pi• the propagation 
of both waves with frequency w ~ WHi is impos
sible because of the strong Cerenkov damping in 
the ion gas and the cyclotron damping at both the 
first harmonic and at the multiple harmonic. On 
the other hand, if PH »Pi· then the phase velocity 
of the waves is much larger than the mean thermal 
velocity of the ions, and therefore Cer;enkov damp
ing of waves with frequency w ~ WHi is exponen
tially small. Cyclotron damping at PH »Pi is al
ways small, even if w is close to swHi ( s = 2, 3, 
... ). On the other hand, if w is not close to swHi• 
then the cyclotron damping is exponentially small. 
In this case it is necessary to take into account 
only the Cerenkov absorption of the waves by the 
plasma electrons. We shall assume below that the 
condition PH » Pi is satisfied. The absorption of 
waves due to short-range collisions will not be 
taken into account. 

We consider first cyclotron radiation of the 
ions, assuming that the n;_jiated frequency is not 
very close to WHi, so that the inequality I w - WHi I 
» k 1 vTi is satisfied. In this case the coefficients 
a, b, ... , which determine the dielectric tensor of 
the plasma 

B;j = aO;; -[- bxiXj + chi h; + dBijk hk 

+ e (xi Ejkl Xk ht - Xj: e;k{ Xk ht) + /Ei!d Xk ht Ejmn Xm hn 

(where K = k/k and h = H0 /H0 ) have the form 

a= ro1 + 2icr, b = 0, c = -a + 2v; z;q(?e) M! m, 
(1.(0 

e = -- i-~e q(ze), 
WHi COS"" 

(1)* 

We assume here the following notation: 
00 

00 

1~-oo 

l - v- vi 12 (/.3n sin e)2 JII-2 

o- o - n exp(-z21), 
1 -- J/T 1 - 8 2!11[11' ~n I cos 0 I 

*tg =tan. 

9 

W}u 
Ut:::::::::~, 

Q~ __ 4:rte2 no 
,- M ' 

q (z) = 1 + i v nzw(z), 
L 

(J) 

w(z)=e-z'(signk 11 + :n )e1'dt), Ze =--~-~-, 
V2 k !I 0 re 

0 

JilT. 
Vr; = j\; ' kc 

n=w' 

k c 
nn =+=ncose, 

k J c ' 
n 1_ = ~ = n sm 8, 

Ti and Te are the temperatures of the ion and 
electron gases, m is the electron mass, M is the 
ion mass, m 0 is the electron density which is equal 
to the ion density. 

Recognizing that c is appreciably larger than 
a, d, e, f, and In 12, we obtain the solution of the 
dispersion equation for nr1: 

where 

co 

n'11i = n:1 + ~ n;1; 

1=-00 

lfJi mv; sin2 0Q n:1= exp(--z2) 
4Mze n 11 cos2 0 (2n~1 + n~ - 2e1) e ' 

Q n11- e1 n~ 1 (e,n2 - c:i + e~) 
= --+ ---"------,--__:::._____::_ 

ui v~Jq(ze)i• 

, 2n11 + n3_- 2e, + 2 (//[Ill 10 2 

nti =Cit 2 2 • 
n 11 (2n ll + n _i - 2e1 ) 

(2) 

(3) 

(4) 

(5) 

(6) 

The attenuation coefficient n~ is brought about 
by the Cerenkov absorption of the waves by the 
plasma electrons. The attenuation coefficients nz 
(l ;ec 0) are due to the presence of cyclotron ab
sorption by the plasma ions under the conditions 
of normal ( l ~ 1 ) and anomalous ( l ::::: - 1) Dop
pler effects. (Expressions for the imaginary part 
of the refractive index, corresponding to (5) and 
(6), were derived earlier [6]. ) 

The refractive index of the electromagnetic 
waves in the region w ;:;. WHi ( w not very close to 
WHi) has an order of magnitude 

where v A = H0 !../ 47rn0M is the Alfven velocity. 
We assume that VA « c, for when VA ;:;. c the 
cyclotron radiation and absorption effects are 
exceedingly small. The Cerenkov attenuation 
coefficient is 
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for VTe ~ v A· When VA » VTe• the coefficient ne 
is exponentially small. The cyclotron attenuation 
coefficients n[ are generally speaking different in 
order of magnitude, therefore it is necessary to 
maintain in the sum (4) only the largest term. 
When I zzl ~ 1 we have in order of magnitude 
nz ~ nA(f3nA)2l-3• The Cerenkov absorption of 
the waves by the plasma ions is always exponen
tially small, so that 

J Zo I ~ (~nA)-1 ~ YPH/P;~ 1. 

If w- WHi, we obtain from (3) for a weakly 
damped wave 

Inasmuch as w R:J WHi• we have 

In~ I~ In; I (l =F 1). 

(7) 

(8) 

(9) 

The damping coefficient (9) is exponentially small 
by virtue of the assumed condition 

I z1l ~ 11 - wHilw I (~nAr1 ~ 1. 

For the other wave 

n~ 1 ~ n3_ ~ I e1 I, 

where 

i.e., the cyclotron damping for this wave is much 
larger. 

In the low-frequency region ( w « WHi) expres
sions (3) simplify to 

(10) 

(11) 

The first of these expressions determines the 
refractive index of the "fast" magnetic-sound wave, 
and the second determines the refractive index of 
the Alfven wave. In this case the damping coeffi
cients of these waves are respectively 

n'11 = V ~ (:) ~. n~ tg2 e exp (- Z!). 

Ze = 1 , 
V2 ~. Vn~ -n3_ 

mco2~e n~ 

Mco~; n}_ (1 + ;) exp (- z~). 

(12) 

where 

; = niln~ 1 q (z.) j2 • 

Cyclotron damping of magnetohydrodynamic 
waves and Cerenkov damping in an ion gas are ex
ponentially small. The expressions for the imagi
nary part of the refractive index of a magnetic
sound wave, corresponding to (12), were obtained 
in [8- 10 ] (we note that a factor .../ Te /Ti was 
omitted in the expression for the damping coeffi
cient in [10], and a factor 1 + ~ was omitted in the 
expression for the damping coefficient of the Alfven 
wave in [8J). 2> 

The expressions for the electric and magnetic 
field intensities in the wave zone, produced by the 
moving ion, have the form 

00 

E = ~ ~ E~1>, (14) 
' ( S=-00 I S=-<X> 

£~1 =Psi sin 1¥sf [(e1- n~l i) Jlsl - SE2h1l k_1_ro], 

£~1 =-Psi cos X cos '¥sf Ie.J;sl - s (e1 - n2) Jlsll k.1r0 ], 

(j) ,. 2 
H"'s =-Psi n cos 6 cos 1¥si [e2Jisl - s (e1 - n) Jlsrlk.lr0 ], 

H~l =- P,i n cos (X- 8) sin '¥si [(e1 - nT1 i) J;s 1 

- se2 J1s1l k.1r0 l; 

2 ( -1 )i-1eco~ .l 
p . - ~,---,,..--,-----=;o,-, 

SJ - cRii-~ 11 dcon 111 jdco I 

,.( n.l exp(~x51 R) 

X l/ sin x 1 cos x·d2n11 ; dn}_l n111 (nf11 - nT12) . 

(15) 

(15') 

Here and below the argument of the Bessel functions 
Jlsl and their derivatives ,Jlsl is k1r0• The phase 
'~~sj and the damping coefficient Ksj are 

1¥si =k_1_1R sin X+ k111 (k.li)R cos X- ffisjt- snl 2- nl 4 

- scp + {rt I 4) sgn (cos x d2n 11 1 I dn}_), 

Xsj = c-1 ffisjn; 1 Fos X, (16) 

where nflj is determined by formulas (4)-(6). The 
connection between nlj and the angle x is deter
mined by the expression 

dn 11 1 n.l1(Vnj_1 +4~=t=n2 .li) 
dn.l. = - 2 V 4 4 2 = - tg X· (17) 

I n II i n .li + e2 

21:n this connection it is necessary to add to formula (36) 
of [•] 

q'" = -~~n}_tg2 9 l2u,.(I + T,.!Te- Ii- /eT/T.), 

after which formula ( 40) of [ 4 ] becomes 

~3 3 

(1) = ,.nA (cot2G-3+!2.tg2 G). 
W 1 U; f81t \ 4 
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The frequency of the radiated wave w = Wsj is de
termined from the radiation condition 

(18) 

Using (14) and (15) for the fields, we obtain the 
following expression for the intensity of the ion 
radiation at frequency Wsj per unit solid angle: 

• 2 I )2 'lsi=sin8{le2ls -s(e1 -ni)Js k_1_To cosxcose 

+ l(el- nft j) J~- se2JS I kj_To)2 cos (x- en 

x sin x cos2 e (n2 - n2 ) 2 cos x -'-1 1 { I d2n 1 •• 

Ill II 2 dn3_i 

X 1- ~II d~ i ; ( dwn. ) [}-1 
(19) 

where w0 = e2win.Bi /2rrc and w = 4rrw0 /3 is the 
summary ion radiation intensity in vacuum. For
mula (19) with s = 1, 2, 3, . . . determines the ion 
radiation under the conditions of the normal Dop
pler effect, and when s = -1, -2, and -3, ... -
under the conditions of the anomalous Doppler ef
fect. Expression (19) for the cyclotron radiation 
( s "'- 0) is valid when lrr /2 - e 12 » m/M for both 
fast ions (Vii » VTe) and slow ions (Vii ~ VTe· 
and also Vii~ VTi at s "'- 1). When lrr/2 -e 12 

» m/M, formula (19) coincides with the expres
sion for the intensity of cyclotron radiation of 
fast ions, obtained by Pistunovich and Shafranov [3]. 

This agreement is connected with the fact that the 
expressions for the refractive indices in the fre
quency region w "' WHi of a cold plasma (fast 
ions ) and of a hot plasma (slow ions ) coincide, 
in spite of the fact that the dielectric tensor is 
appreciably different for cold and for hot plasma. 

In the case s = 0 ( Cerenkov radiation) formula 
(19) can be used only for fast ions VII » VTi· 

Figures 1 and 2 show schematically plots of the 
functions nflj(ni) and dnllj(n1)/dn1 (for n11 > O) 
respectively for the cases w < WHi ( Ui > 1) and 
w > wHi (ui < 1 ). The curve dn11tfdn1 on Fig. 1 
has a minimum when n1 < nA if Ui > 'lfa. When 
Ui < '1fa this minimum lies in the region n1 > nA. 
When n11 < 0 (tan x < 0) the function dn11 /dn1 re
verses sign. 

The solutions of (17) correspond to the point of 
intersection of the curve y = dn11 /dn1 with the line 
y = -tan X· As can be seen from Fig. 1, when x 
> Xmax radiation of one wave with n11 = n11 2 is pos
sible. When x < Xmax three waves are radiated 
(one wave with refractive index n11 2 and two waves 
with n11 = n11 1; these waves have phase velocities 

FIG 1 

FIG. 2 

t 
I 
I 
I 
I 
I 
I 
I 
1n} IJ2 

~ 

that differ in value and direction). The angle x 
= Xmax is determined from the equations* 

When w > WHio as can be seen from Fig. 2, radia
tion of only one wave is possible (the radiation of 
the other wave for which n2 < 0, is impossible). 
From this and from the radiation condition (18) it 
follows that in the case of the normal Doppler ef
fect one wave is radiated "forward" (cos e > 0, 
w > WHi) and either one or three waves can be 
radiated "backward" (cos e < 0, w < WHi). For 
the emission of slow particles, the Doppler effect 
is always normal, so that only one wave is radiated 
''backward" when s = 2, 3, ... , since Ws > WHi· 

Let us estimate the order of magnitude of the 
intensity of ion cyclotron radiation for the first 
harmonics. If Vii "' v 1 "' v A (fast ions), then 
Wsj "' w0nA. If VII "' v 1 «VA, then Wsj 
"'WonA(V1/VA) 2s-2 for S "'- 1. 

When s = 1 the intensity of radiation of the 
wave with refractive index (7) decreases with in
creasing particle velocity (VII « v A, v 1 « v A): 

Wo (' VII r n (g5 X e-2><,R (20) 
w1 = y2 ~. A sinxcos2 X(1 +2tg2 xl'1' ' 

where the damping coefficient K 1 is determined by 
formulas (16), (8), and (9). ( z1 = v11 /.f2 VTi » 1, 

*tg =tan 
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tan e = 2 tan x). In this case we have in order of 
magnitude w1 ~ wonA (vii IvA )2 « w0nA. 

The radiation intensity of the other wave, for 
which the refractive index tends to infinity when 
w-- wHi [ n2 ~ wn),_/( wHi- w )], to the contrary, 
increases with decreasing particle velocity: 

(21) 

It must be noted that expression (19) can be used 
in this case only for fast ions ( z1 ~ Vii /VTi » 1). 
However, the estimate (21) is correct in order of 
magnitude also when v11 ~ VTi· When vii ~ VTi 
the electromagnetic wave under consideration at
tenuates strongly: 

Re n 11 ~ Im n 11 ~ c (v 1,v3t)-•;,. 

Inasmuch as {3n11 « 1, the quantities (23) are 
exponentially small if w is not close to SWHi 
( s = 2, 3, ... ; when s = 0 and 1 expression (23) 
can be used only if I zs I » 1 ). The contribution 
of the ion radiation in the frequency interval w, 
w +dw turns out to be noticeable only if w is close 
to swHi• so that zs ~ 1. With increasing number s, 
the values of TJsj for Zsj ~ 1 decrease rapidly: 

llsi ~e2n0ul (vrt/c2 ) (vr; I VA) 2s-2 • 

The equilibrium radiation intensity Ij ( x. w ) 
= TJsj /asj• where asj = 2Ksj is the absorbing 
ability of the plasma, coincides with the Rytov 
formula 

I;=' !Iunsin0Vn2 + n' 2 jdcosxldej-1 • (24) 

Here 

The refractive index n( w, e) has according to (3) 
a value 

n2 = {< 1 (l __!_ cos2 0) 

±} i::i (l + cos2 0)2 -4 (ei- E~)} I 2 cos2 6 

(see also C7J). The connection between the angles 
e and x is given by (17), which can be represented 
in the form 

1 dn 
fide=- tg ex- e). (25) 

In order of magnitude we have in the frequency 
region under consideration f ~ lRJn).. Near reso
nance w = WHi for the wave with refractive index 

The radiation field of this field can therefore not 
be represented in the form of a spherical wave. 

Using (19) for the radiation intensity of the in
dividual ion, we obtain the contribution to the radi
ating ability of the plasma for the frequency inter
val w, w +dw per unit solid angle, due to the radi
ation of the s-th harmonic by the ions: 

(22) 

where VII as a function of the angle x and the fre
quency w is determined by (18); f.o(vll, v1) is the 
ion velocity distribution function. From (22) we 
get 

n2 ;::::::; E1 (1 + cos2 !l) I cos2 e > n3t (26) 

the radiation intensity decreases sharply: 

(27) 

where f( e) ~ 1. It must be noted, however, that 
expression (24) can be used in this case only if 

In the region 

j1-wHilw(1"~vr;lvA 

this wave attenuates strongly, so that the notion of 
the equilibrium energy flux cannot be employed. 
The maximum value to which expression (27) tends 
when the frequency approaches WHi has an order 
of magnitude I~ lRJn~(vA/VTi)2 13 • 

Let us examine expressions (19), (16), and (24) 
for the particular cases when the angle x is close 
to zero or to rr/2. 

If x-- 0, then n11 1 for ui < 1 and n11 2 for ui > 1 
have the form 

vu:- 1 1-u. 
n2 = n2 ' - - n2 + ' n4.L, 

II A 1 + V u1 2 .L 8n3t -v u1 
(28) 

The radiation intensity and the attenuation coeffi
cient tend in this case to zero: 

X exp (- r.ts;R), (29) 
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ct . - _w~_l-. /it _s_2_•~_2•_-_a n...;~,;---s-,--2_(_1 _-_u_l_)2_ ( Vil; ) s X 2s+2 

•1 - cw51 V 2 2s!ul 1 + V u1 

x exp (- z~). (30) 

The equilibrium radiation intensity is equal in this 
case to 

2-v-
I-I 4nA U; (31) 

- RJ 1 + V U; 

If x -7T/2, then nllt for Ui < 1 and n11 2 for 
ui > 1 are determined by the expressions* 

2 - 2 ( ul 2 ) n 1. - n A I- 1 + ul ctg X . 

In this case the radiation intensity, the attenuation 
coefficient, and the equilibrium radiation intensity 
are 

uin~ 
I= I RJ 1 + U;. (34) 

If ui > 1, then n11 1 for x- 0 has two solutions 
corresponding to the points of intersection 1 and 2 
of Fig. 1. The solution nlli corresponding to the 
point 1 has for x - 0 the form 

where 

The radiation intensity, the attenuation coefficient, 
and the equilibrium radiation intensity are deter
mined in this case by the expressions 

fu )s-•;, 
x ( i X2s-2exp (- ctSlR), 

f U; -1 
(35) 

2 v- 2S-1~2S-3 2S 2S-2 
WHi :n: f-' S nA 

ct51 = em- 2 sl 
Sl 

Vu s-2 

x ( 1 ) X2s-2 exp (- z~), 
f U; -1 

(36) 

(37) 

*ctg =cot 

The second solution corresponding to the point 2 
for x- 0 is 

V-[ 2 J u. nA 
n =nA -'- I+ , 

II u, - 1 2 (u1 -1) nj_ 

where 

In this case the radiation intensity of the individual 
ion, the attenuation coefficient, and the equilibrium 
radiation intensity assume the form 

<02 v- S2S~2S-3n2S-2 (U _ 1) 
Hi :n: f-' A l 

:Jts1 = -- -2 s 
cw 51 2 s!u1 

x (~ ,1 )
25

-
2exp(-z;), (39) 

Ui -1 J( 3 

It is interesting to note that in this case the angle 
e - 1r/2 when x- 0. The conditions 

cos2 B";;J>ml M (u1 -I), ~n<1 

assume in this case the form 

x'1• > ml M (u,- 1), x'1'';:;'P Vj_ I VA yu, -I, 
'/ ,;--

X '";;J>vrdVA v u;-1. 

It follows from (38) that the maximum radiation 
intensity occurs at angles x close to zero ( e ~ 1r /2 ) . 
Let us estimate the order of magnitude of the sum
mary radiation intensity at the first harmonic, for 
particles with 

In this case 
,;--'I 

w (X) ~w0nA I v u, - 1 X '. 

Integrating this expression with respect to x from 
Xmin to X "' 1, we obtain 

w tot ~won A I v Ut 1 x'/;in· 

From the condition for the applicability of (38) it 
follows that 

x'/;;n ~ m I M (u;- I) for miM > ~3_n5t, 
x'/;tn =~3_n5t I (u,- 1) for m/M < ~3_n5t. 

From the radiation condition we obtain 

so that 
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3 

V U; 1 - -v nA~II· 
Therefore 

3 

w tot - W0nA V nA~\1 (M I m) 
3 

w tot -wonA -vn::JI\I l~}_n~ 
for m!M>~in~. 

for m/ M <~in~. 

This estimate is applicable also when VII ~ v 1 
~ vTi. It is only necessary to replace tl11 and tl1 
by {3=vTi/c. 

An analogous estimate can be readily carried 
out also for the total radiation intensity at the mul
tiple harmonics. 

3. CYCLOTRON RADIATION OF SLOW IONS AT 
THE FUNDAMENTAL FREQUENCY 

The results obtained above for the intensity of 
cyclotron radiation at the fundamental frequency 
are valid only for fast ions, when z1 = v11 !-12 VTi 
» 1. Let us consider now the radiation of the ions, 
without imposing any limitations on z 1. Here, how
ever, we shall assume that v11 « v A and v 1 « v A 
(the case of large v 11 and v 1 was investigated in 
[3]). 

If the frequency of the radiated wave is close to 
wHi• then the coefficients a, b, ... are equal to 

·. yn V;W (zl) V; Vi t 2 e ( ) a= L ------- - 2 g q Z1 • 8 f1n cos e 4 

b v, q (z ) e = - i covsi" e [q (z,) + 21 q (z1)] ' =::: cos2 e 1 ' 

V it viw (zl) 3 . . t 2 e [ ( ) + 1 ( )] d = - - ---- -4 IV;- lVi g q Ze z q Z1 , 
8 j3ncose 

. _ m n~w (z,) vi ( ) 
f = 1 Y n M z cos2 e + 2 cos2 6 q z1 ' 

e 

M v1 cos 26 . -. jit viw (z1) vi 
C = 2m V;Z~q (z,) - 2 cos• 6 q (z1) - 1 V 8 j3n cos 6 - 4 ' 

(41) 

In the case under consideration the solution of the 
dispersion equation corresponding to a weakly 
damped wave has the form (2), where n11 is deter
mined by formula (7), n~ by formula (8), and ni 
is equal to 

V- i3n4 
' - n .L exp (- z2) 

n1 - 8 16n~ 1 w (zl) j2 1 • 

In the particular case z 1 » 1 formula (42) goes 
over into formula (9). 

The field of the fundamental harmonic in the 
wave zone has the form 

Ex= - 2P1 cos :X. sin <p, 

nA cosx · H =--_P1 sm<p, 
'~' V 2 V 1 + sin2 X 

nAP 1 . 2 ) Hx = V2 1 ( + sm :x. cos cp; 

(42) 

(43) 

ei3i3 .L ron A cos x sin2 X 
p 1 = cR 1 w (z1) I (1 + sin2 X)2 

(43') 

The phase cp is determined by expression (16) with 
s = 1. 

The radiation intensity of an individual ion is in 
this case 

l'213}_ n~ sin' X cos2 X _ 2xR 
W=Wo njw(z1)j2 (1+sin2x)'/,e ' 

(44) 

In order of magnitude we have when v11 ~ VTi 

w -w0nA (vr;/VA)2• 

In the particular case when v11 » VTi formula (44) 
goes over into (20). 

The contribution of the radiation of the ions at 
the fundamental frequency to the radiating ability 
of the plasma is, according to (44) and (22), equal 
to 

Mro3i33n~ sin4 xcosx 2 (45) 
1] = 2 V 2JLJLBc I w (zl) lz (1 + sin2 X)' exp (- zl). 

In order of magnitude we have 

t] ~ e2n0ro~v}J cv~ 

when z 1 ~ 1. If z1 » 1, formula (45) goes over 
into (23) [in this case it is necessary to put w 
= wHi in (23)]. The radiating ability then de
creases: 

The equilibrium radiation intensity for the wave 
under consideration is 

4. CERENKOV RADIATION OF THE ELECTRONS 

Let us consider the Cerenkov radiation from an 
electron moving along a helix in a plasma, in the 
low frequency region ( w ~ WHi ). Using formulas 
(2)-(6) for the refractive indices n11(n1) and the 
damping coefficients, and the general expressions 
for the fields (2 .10) from [5], we obtain for the 
electric and magnetic fields produced by the elec
tron in the plasma the following expressions: 

{
n2,-Bl ( VII tg 6) . ur 

E~> =-A 1Vui -v.L~.Ln.L + T sm roJ 

v11 n 11 n .L e2 (a sin '¥01 - b cos '1'01)} 

+ viz; (a2 + b2) ' 

E~> =A cos :X. { ;:, ( V.t~.Ln.L --vii:~ 6 ) cos 'l'o; 

v11 n 11 n .L (n2 - B1) (a cos 'I' o/ + b sin 'I' 01) } , 

viz; (a2 + b2 ) 



RADIATION OF LOW FREQUENCY WAVES BY IONS AND ELECTRONS 1529 

v 11 (e1n2 - e~ + e~) sine (a cos'¥ oi + b sin '¥ oi) } 

v,z~(a2 +b2) ' 

(46) 

where 

Ze 

a= 1 -2z. ~ exp (t2 - z~)dt, b = y;:tz. exp (- z~). 
0 

The radiated frequency is obtained from the con
dition Wj = klijVII· 

From this we obtain ~he intensity of the Cerenkov 
radiation per unit solid-angle interval 

Wj (X.) 

= 8l'tc3M2nf11 (nf11 - n~ 2) 3 sin :x~ 11 I cos x.(d2fl111 t dn~) (dn 11 11 dro) 1 • 

(47) 
where 

vr1 n1 (n2 - e1) (e1n2- e~ + e~ + ----"--=------::-:---_____.::.___;:_ 
v2 zi (a2 + b2) 

+ 2avile' tg e (vii tg e- v j_~ j_ z;n j_) (el n2 - ei + e~) ] 

V u, v,z: (a2 + b2) 

Vfln~lnle; 
+ v7z: (a'+ b2) 

2aVIIn\\n j_ ez(n~1 - BI) (VII tg 6- V j_~ j_ z;n j_) ] 

+ f U; V;Z~ (a2 + b2) • 

The damping coefficient Kj is given by formula 
(16). In order of magnitude we have when VA - Vii 
- v1- VTe the estimate Wj- w0nA(n/M)2, i.e., 
at the first harmonics the electron radiates ( M/m )2 

times less than an ion having the same velocity. 
However, the Cerenkov radiation can make the 

main contribution to the thermal radiation at fre
quencies w- WHi· Indeed, the contribution of the 
Cerenkov radiation of the electrons to the radiating 
ability of the plasma is, according to (22) and (47), 

where 

+ cos (X. _ 6) II l + 11 2 • [
(n2-e)• n4e2] 

U; v2 (a2 + b2) 

In order of magnitude for v A - VTe and w - WHi 
we have 

At the same time, the contribution of the cyclotron 
radiation of the ions is exponentially small if w is 
not close to SWHi• s = 1, 2, 3, . . . When w = WHi 
(for a weakly damped wave) and w = 2wHi (for 
both waves), the cyclotron radiating ability is 
-./ M/m times larger than (48). However even 
when w = 3wHi we get 1Jaj - -./ m/M 1Je· 

In the case of a magnetic-sound wave ( w « WHi) 
with sin2 x » w/ WHi we have e = x and 

-vn mro~.n~ sin2 X 
X=X= - ex -z2 e 8 Me cos X P ( e), 

In order of magnitude we have for vii - v 1 - VTe 
-VA 

x~mjMli., 

where ~ = c/ wnA. The radiated frequency w is 

ffi = Y2f3wH sin X. V 1 -VA I vii cos X.· 

It is obvious that the condition w « wHi is satis
fied if 11- VA/VII cos xi« 1. Thus, the Cerenkov 
radiation of the magnetic -sound wave occurs only 
when v A < v11 near the angle x = x0, where cos2 xo 
=vA/VII· 

If vii is close to v A· so that the condition x~ 
» w/wHi is not satisfied, then it is necessary to 
use the general formula (47). On the other hand, 
if x5 « w/wHi, we have for the Alfven and mag
netic -sound wave 

z. = VII I V2vre' (50) 
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The radiated frequency is in this case 

W=±2wm(VA/VJJ-l). 

Inasmuch as w > 0, only the Alfven wave is radi
ated when v A > vii, and only the magnetic -sound 
wave when VA< Vii· 

In conclusion, the authors express their deep 
gratitude to A. I. Akhiezer and V. F. Aleksin for 
a discussion of the work and for useful advice. 
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