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The quantum as well as classical kinetic equations for electrons interacting with a quantized 
Bose field in the presence of an external homogeneous magnetic field are presented. The 
equations describe the interaction of electrons with various oscillation branches of an elec
tron-ion plasma as well as of a solid body. Closed formulas are derived for some of the ki
netic coefficients. The Fokker-Planck coefficients are calculated for the case of a strong 
magnetic field. 

l. The classical and quantum theories of a non
equilibrium electron system interacting with a 
wave field were considered by Klimontovich [t] and 
by Pines and Schrieffer [2] in the absence of exter
nal fields. The presence of the latter introduces 
essential changes in the formulas for the kinetic 
coefficients, particularly in the limiting quantum 
cases. It becomes necessary to deal with quantum 
systems in the study of kinetic coefficients of sol
ids, both metals and semiconductors. A typical 
classical (non-quantum) system is a high-tem
perature rarefied electron-ion plasma. In this 
connection, it is of interest to study the non
equilibrium quantum and classical systems. 

2. The state of the electrons will be described 
by the diagQnal elements of the density matrix 
Pvv' = fv<'5vv', in the representation of the single
particle Hamiltonian H0, with 

(1) 

Thus, for example, for a system situated in mutu
ally perpendicular static magnetic and electric 
fields B= {o,o,B} and E= {o,E,o}, inthe 
Landau representation, we have 

/ v} =:::: i k,, hz, fl) 

r. __ r.n ( , 11 ) 1 h" k~ I k2 (ftB k E)2 ftc" 
L,J --- ll~:. n j /·) ~- ~ [ t: -j- z]- - t: + ')['-") ' 

.. -~L - ~tc · _ _)-' ' 

Q c= i e! B!flC, a~= h\t~~. Yo=- (cli!?x + pc2£ I B)!eB, 

(3) 

<I>n ( y) is the wave function of the harmonic oscil
lator. 

tions, only diagonal elements Pvv will play any 
role, and moreover the Pvv will be functions of 
only two quantum numbers n and kz. The ele
ments Pvv which depend on kx will describe par
ticle distributions in space which are already in
homogeneous in y. Therefore with th~ aid of the 
diagonal matrix Pvv elements in the H0 represen
tation we can describe also the spatially inhomo
geneous distributions. We note that in describing 
the spatially inhomogeneous distributions that 
have, say, cylindrical symmetry, we can also 
confine ourselves to diagonal elements of the den
sity matrix, but it is necessary to take in place 
of the Landau representation the eigenfunctions 
of the single-particle problem in cylindrical co
ordinates. 

The state of the phonon system will be de
scribed by a distribution function Nq. Let, further, 
Cq be the constant of interaction between the elec
trons and the phonons. We then obtain in first or
der of perturbation theory in the interaction of the 
electrons with the Bose field 

ari,v) = 2J 2~ I Cq 12 {l<v' I eiqr I v) J2 0 (Ev'- Ev- n(J)q) 
'J',q 

X [/ (v') (1 - f (v)) (Nq + I)- f (v) (1 - f (v')) Nql 

+I <v' I e-iqr I v) 12 o (£.,,- Ev + n(J)q) 

X [/ (v') (1 - f (v)) Nq- f (v) (I-f (v')) (Nq + 1)]}, 

(4) 

X [(/ (v')- f (v)\ Tl/ 1 + f (v') (I - f (v))l}. (5) 

In describing spatially-homogeneous distribu- In the case of the eigenfunctions (2), the matrix 
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element ( v' I eiq•r I v) has been already calculated 
earlier [3]. We note that the equations written out 
are suitable for the analysis of spatially-inhomo
geneous distributions, if the characteristic scales 
of these inhomogeneities are large compared with 
the mean free path and with the wavelengths under 
consideration. 

For an electron-ion plasma, the functions Cq 
can be readily obtained by the following elementary 
method. For large values of Nq ( Nq » 1) Eq. (5) 
assumes the form 

(6) 

Inasmuch as Nq is proportional to the square of 
the wave amplitude in the plasma, Yq is double the 
damping decrement of the latter. Therefore, by 
finding the damping decrement of the wave in the 
plasma in terms of its dielectric constant and com
paring the expression thus obtained with Yq• we 
obtain Cq. Indeed, according to [4J, we have 

e (wq) =I- lim 4~e• ~ l<v leiqrl v' >12 . f (v')- f (v) . ' 
"' ..... o q v .LJ E~,- E~- nwq + tl "'I 

v~' 

~hen Yq = 2wq Im E(wq), and 
(7) 

I Cq 12 = _?Jte• liw (p) 
q' v q 

(8) 

for the plasma oscillations; for the acoustic oscil
lations we can obtain in the same manner 

(9) 

Such an expression was first obtained in [5] for 
the interaction constant of the electrons with acous
tic phonons, except in a different notation, and 
somewhat later independently by Bardeen and 
Pines [SJ. 

The frequencies w~£> and w&a) are roots of the 
dispersion equation 

Re e (w, q) = 0, 

where €( w, q) is a trivial generalization of (7), 
namely 

i = 1 pertains to the electrons and i = 2 to the 
ions. 

(10) 

(11) 

In other cases, for example in the study of the 

interaction between the electrons and optical and 
acoustic oscillations in a solid, Cq was deter
mined by a different method. 

When taking into account collisions between 
electrons and between electrons and ions (if they 
are important), Eq. (4) must be supplemented by 
the corresponding collision integral, obtained 
in [3]. 

To describe the nonequilibrium states of a 
classical plasma one frequently employs the col
lision integral written in the form proposed by 
Landau and corresponding to the Fokker-Planck 
equation [7]. Equations of this type are readily 
obtained from (4) and (5), by going to the limit as 
Ii = 0. In the case of a constant magnetic field 
directed along the z axis, the classical limit of 
the matrix element ( v' I eiq·r I v) is given in [3]. 

As a result of such a limiting transition we ob
tain 

8f (Pz• P _!_• Yo. I) 

at 
m=-oo 

xb {J;;. (p _)_ q_j_/f!Q) o(pz q/~J- + mQ- Wq)[(Df) 8q/Wq + fl}, 

(12) 

00 

X ~ ~ dpz 2ndp l_ p .l dyofJ (pz q/~J- + mQ - (uq) 
m=-co 

xJ';. (pz q/~J-Q) {(Df) 8q- Wq f}. (13) 

Here 

(14) 

Jm(x) is a Bessel function and ®q = Nqliwq. In 
the case of weak fields and spatially-homogeneous 
distributions, (12) and (13) go over into the equa
tions obtained first by KlimontovichL 1] and then 
by Pines and Schrieffer [2]. 

3. With the aid of (4), (5) and (12), (13) it is pos
sible to obtain formulas for the kinetic coefficients 
in closed form. Let us consider first the kinetic 
coefficients connected with the equalization of the 
gradients of the concentrations, electrons, and 
temperature in the direction transverse to the 
magnetic field. To obtain the quantum coefficients 
it is convenient to determine with the aid of (4) the 
macroscopic equations of diffusion and heat con
duction. Let us assume that the deviations from 
thermodynamic equilibrium are small, and then 
the distribution functions for determining the dif
fusion coefficient and the heat conductivity can be 
represented in the form 
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f (n, kz, Yo, t) = fo [(!lo- En,kz)!Tol 

+ (afo/a!lo) (allolaN) 6N (yo, t) 

f (n, kz, Yo, t) =fo !(!lo-En,kz)ITol 

+ {(!lo -En, kz)!To -allolaT} 

x (afolallo) 6T (Yo· t). 

(15) 

(16) 

Substituting (15) and (16) in (4), linearizing with re
spect to oN and oT, and then expanding the colli
sion integral in powers of qx, we obtain for Max
wellian statistics 

0 o2 at 6N (y0 , t) = D _r_ - 2 6N (y0 , t), 
oyo 

0 o2 at 6T(y0 , t) = x _r_ - 2 6T (y0 , t), 
oyo 

ct4 v \ 2:n: 12 ( 1) <1> ( ) D_r_=2(Z:n:)a JdqhZJCqqx {Nq+ 1 q2 ,q_r_,wq 

+ Nq<l>l(-qz, q..L, -(J)q)}, 

q>1 = b~1 ~ M (En',kz+Qz- En, kz -1iw) / F nn' 
n, n',k~ 

(17) 

(18) 

(19) 

(20) 

(21) 

<D2 = b21 ~ M (En', kz+Qz- En, kz -1iw) / F nn' (a2q3_/2) /2 

n, n',kz 

X{(!-lo- En·. kz+qz) /To- a!-lofaT} 

X (Enkz- !10) {afo (En·, kz+qz>fa!-lo}; 

b1 = ~ ('. dpz }!b_ 
L..i : Oflo ' 
n 

F nn' (x) = xi n'-nl e-x L~n'-nl (x), (22) 

LW'-n>(x) is the generalized Laguerre polynomial. 
From (19) we can obtain an expression for the 

electric conductivity transversely to the magnetic 
field. Using the Einstein relation, we obtain with 
the aid of (19) a formula for the electric conductiv
ity, which coincides with formula (8) of the paper 
by Gurevich and Firsov [B], obtained in a different 
way. Inasmuch as in formula (19) the matrix ele
ment ( v I eiq.r I v' ) has already been calculated, 
the analysis of the different limiting cases entails 
no difficulty. 

An account of the collisions between the elec
trons and ions leads to an additional contribution 
to the coefficients (19) and (20), which in many 
cases is more significant than the contribution 
from the scattering of the electrons by the pho
nons. From the collision integral for Maxwellian 
distributions 

(23) 

which was obtained earlier [a], we can derive equa
tions analogous to (17) and (18). Putting f2 = f2(nkz) 
and using f1 in the form of (15) and (16), we obtain 
equations of the same type as (17) and (18), while 
for the coefficients of diffusion and heat conduction 
transversely to the field we obtain 

D&:_o~ b-1 i_ ~ (_0._)2 2:n: \ dqV d 
..L 1 2 L..J e1B li J (2:n:)3 11 

I 4:n:e1e. \2 
X 8 (TJ/li, ~) q2 F n,n; (a~ q3_/2) Fn;n~ (a2 q3_/2) 

X 6 [£1 (n~, k! + qz) -E1 (n1, k!) -1']) 6 IE;(n~, k; + qz) 

- E; (n;, k;) + 111 n (n;, k~ + qz> la/1 (n~, k: + qz)lla!lo. 

(24) 
where the summation is over i, ni, nj, k~, k~, n1, 

n1, and k1. 
An analogous formula is obtained for Kioll, if 

we replace b;:-1 in front of the sum in (24) by b21 

and multiply the integrand by 

{(!lo- En,, k!+q)/To- allofaT} (En,.k'lo)· 

In the quantum formulas (19), (20), and (24) we 
can go to the classical limit by letting n go to 0. 
Then 

X 6 (qz p~lllt + m;fJ; + 11)1 q'e (~7/i. q) 

pi q 

x ( ,;\/ )q~n<P_r_.q_r_)n<PL.pz>, r, , 

where ~ is the Maxwellian function. 

(25) 
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An analogous formula can be written for K1 
+ Kfoll. We note that, as it should be, the first 
term in (25) coincides with the coefficient pre
ceding 82/ayg in (12), averaged over f1 (pi, Pl ), 
while the second term corresponds to the analo
gous coefficient if (12) is supplemented by the 
classical limit (23). From (25) we can immedi
ately obtain an expression for the electric con
ductivity, using the formula a 1 Tk = e2n1 ( D 1 + Df0 ll ) 
( n1 is the electron density). 

4. If the electrons have ordered motion due to 
different causes (for example drift in perpendicu
lar electric and magnetic fields, electric current, 
etc.), then the electron-ion plasma becomes ki
netically unstable if the drift velocity Vd exceeds 
Vph• the pJ;lase velocity of the wave. Indeed, direct 
calculations show that for acoustic oscillations 
[I Cq 12 is determined from (9)] Yq has the form 
(for q II B) 

xan{[(f.lo -1iQl (nl+ 1/z) 

- f.l1 (vph- Vct) 2 l/kT}/af.lo· (26) 

When Vph < Vd we have y < 0, that is, the oscilla
tions grow. In the case of Fermi statistics, (26) 
describes giant oscillations of the growth incre
ment of the sound waves for Vph < Vd· Instabilities 
of this type can be used in principle to amplify and 
generate ultra and hyper sound. When Vd = 0, (26) 
goes over into the result obtained by Gurevich, 
Skobov, and Firsov [S]. 

5. In conclusion we note that Eqs. (12) and (13), 
if (12) is supplemented with the particle collision 
integral as determined in [a], may turn out to be 
useful in the investigation of electron heating and 
runaway. In place of the system (12) and (13) we 
can consider (12) alone, from which ®q is elimi
nated with the aid of (13), since the equation for 
®q can be integrated in general form. The equa
tion will have the simplest form in the case of weak 
fields, when the influence of the magnetic field on 
the collisions can be neglected ( rL /rn » 1). 

APPENDIX 1 

Let us calculate the coefficients in (12), which 
can be written in the form 

(A.1) 

i) c i) } 
op j_ ' - eB oyo ; 

D,o = ~ ~ kT (' d _Qo Q~ J 2 
-~ ..::..J 2:rt ,\ q q2 m 

m=-co 

In the general case the integrals in (A.2) are not 
expressed in terms of investigated functions, but in 
the particular cases that are of interest, the quanti
ties Da{3 and Aa can be approximated by elemen
tary formulas. 

Let us consider, for example, the case of strong 
magnetic fields, when the Larmor radius is rL 
« 1/~ax (~ax"' 1/ro and ro is the Debye ra
dius). We cannot neglect here the influence of the 
magnetic field on the collision process. Naturally, 
the collision integral which does not take into ac
count the dependence of the cross sections on the 
magnetic field, is unsuitable for the analysis of 
this case. If the inequality rLqmax « 1 is satis
fied, the Bessel functions contained in Daf3 and Aa 
can be replaced by their asymptotic values for 
small arguments, and then only terms with m = 0 
are significant. Under these assumptions we have 

The inequality rLqmax « 1 enables us to approx
imate Wq ~ Q; then 

D II = e2~ I :. I Q2Jn [ 1 + ( qm;~Pz ) 2] ' 

Daa = e;T I ;z I {q~a<- (Qf.l/Pz)2Jn [ 1 + (qm;~Pz n}' 

Dl2 =D1a =Dzl =Dal =D22 = 0, 

Al= ~ (;z/Q2Jn[I+(qm;~Pzn. 

(A.4) 

If we approximate the spectrum by the expres
sion w~ ~ n2 + wij ( w0 is the Langmuir frequency), 
we obtain, when n2 « wij, simple interpolation for
mulas which go over into those obtained by Klimon-
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tovich [1], and when n2 » w~ we again obtain (A.4}. 

APPENDIX 2 

Let us calculate the coefficient of electron dif
fusion transversely to the magnetic field for elec
trons scattered by plasma oscillations. According 
to (25) we obtain for a Maxwellian distribution 
function 

_Vr n ( c )2 - (' dq L q5 
DJ = 7 73 fW J q" I qz I dqz 'f/Jml (r7_ q~) 

x exp { - r'i q~ - (wq - rn~~) 2/(2q;--zm, (A.5) 

where v2 = kT/J.l, rt = v2/n2, and Im(x) is a 
Bessel function of im_9-ginary argument. 

If (wq -mQ)2/(2v2 ) ~ clinax• then D1 is an ex
ponentially small quantity. The largest contribu
tion to D1 is made by the regions ~q-mQ )2 ~ O, 
or more accurately ( Wq - mQ )2 I ( 2v2 ) « clinax· If 
we approximate w~ ~ Q2 + w~, we obtain for the 
oscillating part of D 1 

Thus, whenever the magnetic field intensity is 
such that wq ~ m 0n, D1 has a maximum; in other 
words, the dependence of D1 on B has an oscil
lating character. 

Note added in proof (November 15, 1962). Generalization 
oi initial equations and further development of the ideas em
ployed here for calculating the kinetic coefficients have made 
it po~sible to obtain the total particle density and energy 
fluxes with account of the phonon entrainment effect. 
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