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Stimulated emission of radiation of an atom (molecule) placed in a strong field is calculated 
by taking into account saturation, the Doppler effect and field fluctuations in the incident light 
wave. It is shown that the amplification mode in a medium with negative absorption and the 
character of the spectral narrowing may depend on the concentration of the active centers. 
The existence of a narrowing limit connected with saturation is considered. 

THE intensity of stimulated emission is propor­
tional to the intensity of the incident light only in 
the linear approximation, when the stimulating field 
is sufficiently weak. In a strong electromagnetic 
field, the level populations change and this leads 
to a redistribution of the intensity of the stimulated 
emission and to a broadening of the spectrum of the 
amplified frequencies (saturation effect, see, for 
example [1J). The question arises of how the satu­
ration influences the operation of quantum ampli­
fiers and generators, and whether saturation leads 
to the existence of some limit to the narrowing of 
the spectral lines. 

In order to answer these questions to some de­
gree of approximation, we solve below the follow­
ing problem. An atom (molecule) 1> in the excited 
state is introduced into a strong electromagnetic 
field (traveling wave) at a certain instant of time. 
The frequency of the atomic transition is close to 
the fundamental frequency of the field, and both 
these frequencies are much larger than the fre­
quency shifts due to the Doppler effect, the line 
width connected with the damping, and the broad­
ening due to saturation. The transition scheme is 
shown in Fig. 1. The spectral composition of the 
stimulated emission is calculated. In order to ob­
tain the light amplification coefficient in an active 
medium consisting of a set of such atoms, the re­
sult obtained is averaged over the time of forma­
tion of the excited state t0 and over the velocity 
of the atoms (allowance for the Doppler effect). 
The spontaneous emission does not exert any in­
fluence on the field growth mechanism and on the 
line narrowing and is therefore not calculated in 
the present paper. It is assumed that the upper 

1>we shall refer specifically to atoms, but the results ob­
tained pertain to any two-level system. 

and lower states in the atom attenuate with equal 
rate (equal to r /2 ) . 

FIG. 1. Two-level quantum 
mechanical system. The wavy 
arrows denote transitions to all 
the lower levels (damping). 
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We first establish more accurately the limits 
of applicability of the semi-classical calculation 
method and discuss the role played by fluctuations 
of the incident field due to the shot effect; we then 
formulate the equations of the problem and analyze 
individual cases that have a bearing on experimen­
tally realized laser schemes. 

SEMICLASSICAL METHOD 

The stimulated emission should, strictly speak­
ing, be calculated using the formulas of the quan­
tum theory of radiation, as was done for example 
by Rautian and Sobel'man [2]. It is possible to cal­
culate the atomic transitions quantum mechanically, 
and to calculate the field classically. Such a "clas­
sical" method was used by Karplus and Schwinger [1] 

and by Basov [3]. It is clear from general consid­
erations that the intensities of the electromagnetic 
field can be regarded as c-numbers in the case 
when the number of photons per cell of phase space 
is sufficiently large, nA. » 1. In ordinary light 
sources the radiation density is such that nA, rarely 
exceeds unity. Nonetheless, in linear optics the use 
of the semiclassical method is permissible. The 
spectrum of the incident radiation can always be 
represented in the form of a sum of monochromatic 
components, for which obviously nA. = oo. If the 

1496 



EMISSION OF RADIATION IN A STRONG ELECTROMAGNETIC FIELD 1497 

system is nonlinear, the condition nA. » 1 becomes 
essential. In light beams emitted by quantum gener­
ators this number is quite large, nA, ~ 1011-1012 . 

The condition for the applicability of the semiclas­
sical method is then satisfied with large margin. 

FLUCTUATIONS 

It is known that the electromagnetic field in a 
light wave fluctuates over a time on the order of 
1/ 6., where 6. is the frequency interval of the in­
cident spectrum. In stimulated emission, the fluc­
tuations are determined by the shot effect. The 
existing light sources can be regarded in the ma­
jority of cases as systems consisting of a large 
number of independently radiating objects. The 
result of addition of many waves with arbitrary 
phases is conveniently described by representing 
the field in the form of .a Fourier series with 
- T/2 < t < T/2, where T - oo. The phases of 
the Fourier components Ew of the summary field 
intensity vector are random quantities, which as­
sume with equal probability all values from 0 to 
271". The intensity I Ew 12 is the Fourier transform 
of the cor.relation function, and, being already an 
averaged quantity, does not fluctuate. In linear 
optics the undetermined phases of the complex 
Ew drop out from the final formulas, which are 
quadratic in the field vector, and come into play 
only in the coherence or incoherence phenomena. 

To calculate linear systems such as optical 
generators it is necessary to know not only the 
intensity but also the law governing the phase dis­
tribution. It is known that the statistical proper­
ties of the generated signal are determined by the 
noise in the system. In optical generators, the 
photon-multiplication mechanism is such that the 
photons, increasing in number, maintain their 
phases and consequently the phase relations are 
not disturbed. We therefore assume throughout 
that the statistical properties of the incident field 
do not differ from the statistical properties of the 
''bare" field of the spontaneous emission, that is, 
that the phases are distributed with equal probabil­
ity from 0 to 271". In particular, we shall retain this 
assumption also in the case when the incident field 
coincides with the field of the optical generator it­
self. 

The saturation effect is usually calculated for 
monochromatic light only. It is assumed here that 
the amplitude and the phase of the field-intensity 
vector are strictly fixed. Such calculations give 
the correct result only in the case when the time 
of observation is much shorter than the character­
is tic time of the field fluctuations ( inertialess ob­
servation). In ordinary light sources the width of 

the spectral lines is 6.- 109 sec-1 and larger. The 
fluctuation time 1/6. is very small, and it is clear 
that the optical instruments register only quanti­
ties that are averaged over the fluctuations. 

It is easy to understand that in calculations 
with monochromatic radiation the statistical prop­
erties of the light can be taken into account with­
out repeating all the derivations anew. It is suf­
ficient to carry out the averaging in the final for­
mulas. Let cp be a quantity proportional to the 
field in the incident wave, w the frequency of the 
incident light ( w :::e w0 ), V the volume occupied 
by the field, and Pab the transition matrix element. 
According to equation (34) of the paper of Karplus 
and Schwinger [i] the stimulated emission of the 
atom placed in the field cp changes intensity by 
an amount 

6lqJI2 = ~ IPabl2 f2+(wo~w)2+f<:pJ21(jJI2 • (1) 

Account must be taken of the fact that cp depends 
little on the time and fluctuates in such a way that 
the Fourier components of the function cp ( t) have 
indeterminate phases. In order to carry out the 
averaging, it is necessary to know the probability 
that the vaJ.ue I cp 12 (which has a specified mean) 
assumes a certain value. This probability was 
calculated by Rayleigh as long ago as in 1880 (see, 
for example, [GJ). It amounts to 

w (I (jJ 12) d (I (jJ 12) = exp {-I (jJ 12 I I (jJ 12 } d (I (jJ [2) I I (jJ [2 • (2) 

The results of integration of formula (1) with weight 
(2) are shown in the figure (lower curves). The 
upper-dashed curves have been plotted in accord­
ance with (1), without account of the statistical 
properties. We see that the greatest role is played 
in the fluctuations in the case of average saturation, 
and the discrepancy does not exceed 20 per cent. It 
will be shown below that in spite of the large value 
of the effect, under certain conditions the fluctua­
tions can greatly influence the gain, preventing the 
narrowing down of the spectral lines. 

POPULATION EQUATIONS 

If the light wave is a traveling wave, then the 
Doppler effect leads only to a shift in the frequen­
cies of the spectrum in the coordinate frame fixed 
in the c.m.s. of the atom. In quantum generators, 
however, a standing wave is produced. It is easily 
understood that in a coordinate frame fixed in the 
moving atom the standing wave loses it monochro­
maticity. This effect was analyzed in detail by 
Rautian and Sobel'man C7J. In our paper we shall 
consider only the traveling wave. 

Having made these preliminary remarks, let 
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us proceed to describe the fundamental equations. 
The field is conveniently characterized by the 
function 

cp (t) = 2Ji-l )Pab IE (f) eiwof' 

which has a dimensionality sec -l. Here E ( t) is 
a variable electric field, and Pab the matrix ele­
ment of the transition. In the approximation r 
« w0 and .0. « w0, where .0. is the width of the 
incident spectrum, we can neglect the double fre­
quencies and assume that cp ( t) is a complex func­
tion with a characteristic interval of variation 1/ .0.. 

Let ?; be the frequency shift due to the first­
order Doppler effect. In the coordinate system 
fixed at the c.m.s. of the atom, the function cp(t) 
goes over into the product cp ( t) exp (i ?;t). Let 
a and b be the amplitudes of states "a" and "b," 
which depend on the time. The known procedure [3] 

leads to semi-classical equations describing the 
stimulated emissions with allowance for the Dop­
pler effect 

i ( Q + ~ a) = ~ bei'C.I, 

· (b. + I_ b) = ~ ae-i'C.I • 
l 2 2 (3) 

The initial conditions a= 1 and b = 0 are spe­
cified at the instant of time t 0, when the atom is 
introduced into the system. Summation over many 
atoms leads to averaging over t0, and therefore, 
calculating the contribution of one atom, we shall 
average beforehand over t0• The amplitudes a and 
b depend both on the time t and on t0• Let us de­
termine the overpopulation of the upper level com­
pared with the lower one, averaged with respect 
to t0, 

I 

N (t) = r ~ (I a )2 - I b )2) dto. 
-co 

The superior bar denotes here averaging over 
the infinitely large time T. The change in intensity 
at the frequency WA. is proportional to the real 
part of the product <P~PA.· The amplitudes a and 
b in the right half of (5) are conveniently replaced 
by substituting the formal integrals (3). We find 
that the radiation intensity at the frequency W}. 

increases by an amount 

6 I <r1. )2 = :~ I Pab )2 

X Re(cp; N (f) cp (t) i (w,-wi) 1) /(I'+ i (w0 - W1,) + i~). (6) 

The mathematical difficulty lies in the fact that 
the function cp ( t), contained in (4), is a random 
function. One must solve Eq. (4) for arbitrary 
cp(t), and then substitute the solution in (6) and av­
erage over the time and over the phases ( statis­
tical properties ) . 

In general form, unfortunately, it is impossible 
to carry out the derivations. It is possible, how­
ever, to obtain a solution for the most important 
case, when the incident field has a spectral com­
position close to monochromatic. Let us assume 
that the width of the spectrum of the incident ra­
diation is much smaller than the damping width r. 
In this case the function cp ( t) in equation (4) de­
pends little on the time and has the obvious solu­
tion N ( t) = const. For the stimulated emission 
we obtain the well known formula (1). The gain 
o I <PA.I 2 /I <PA.I 2 at the fundamental frequency has a 
maximum at w;>._ = w 0, thus determining the "os­
cillation mode with maximum Q." The averaging 
of (1) over the Doppler shifts with mean square s5 
yields 

6[ (jl), [2 4:n: 2 r r dt 

~ = hV ll'abl ~ v-1 +2(;~1 
It follows from (3) that I X exp [- ( 1'2 +I q;), )2 + ((:h+-2~i;' ) t ] . (7) 

- r + dNdt(t) + r N (t) =- Re c_· cp (i) cp' (t') exp {- r (t- t') 
\ It is seen that for all relations between the param--oo 

+ i~ (t- t')} N (t') dt'. 

We expand the field <P ( t) in a Fourier series 
with -T/2 < t < T/2, T-oo: 

(t) 'l i (w"-w)) I <p =~ LJ <p!.e . 
). 

(4) 

In order to find the stimulated emission within 
the framework of the semiclassical theory, it is 
sufficient to calculate the polarization vector. The 
component of the polarization Fourier vector has 
in the laboratory frame the form 

PJ.. = Pab a'b exp {- i (w 0 - w~c) t- i~t}. (5) 

eters of the problem the gailn remains a maximum 
when W;>._ = w0• 

This fact, however, is still not sufficient to en­
able us to draw any conclusion concerning the spec­
tral narrowing. It may turn out that the monochro­
matic solution is not stable (that is, with maximum 
Q ) . If the gain at the sideband frequencies exceeds 
the gain at the fundamental frequency, the radiation 
spectrum will start broadening (there is a limit on 
the narrowing). In this connection it is necessary 
to solve also the stability problem: let the incident 
wave represent a superposition of an intense field 
frequency w;>._ and a weak field with frequency w!J.. 
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We shall take the weak field into account in first 
approximation, assuming that the overpopulation 
"flickers" slightly with a difference frequency 
WJ.l. -WA,. 

Here I cpA.I 2 is the intensity of the monochromatic 
line (at the .fundamental frequency). As w J1. - WA, 

the foregoing formula yields 

1\Jcp~'-/ 2 _ 4:n: 2 flf2+(wo-w~'-+s)2] (9) 
~- w r Pab I lf2+ (wo-WI'- +~)2Jcp,_ J2]2. 

The gain at the weak sideband frequencies turns 
out to be as a rule smaller than the gain at the fun­
damental frequency [see formula (1)], and near the 
fundamental frequency the gain changes abruptly 
(this effect was observed by Rautian and Sobel'­
manC2J). However, if we take into account the sta­
tistical nature of the light, expressions (8) and (9) 
must still be averaged in accordance with the prob­
ability distribution (2). It is easy to verify that the 
integrals of (1) and of (9) coincide identically, and 
the field fluctuations in the incident light wave lead 
to a vanishing of the jump in the amplification and 
deteriorate the conditions under which the spec­
tral line narrows down. 

FUNDAMENTAL PARAMETERS AND PARTICU­
LAR CASES 

Let us consider a plane wave propagating in a 
homogeneous medium with inversely populated 
levels. The character of the variation of the spec­
tral composition under these conditions is deter­
mined by four parameters, namely, r -the damp­
ing constant of the atomic levels, to -the mean 
square Doppler shift, and the average field at 
(rqJT2") 112 in sec-1• The other important parameter 
depends on the concentration of the active centers, 
namely the rate of increase of the signal along the 
beam {3. 

By definition of the quantity {3, the intensity in­
creases as exp ( {3x/ c ) , where x is the distance 
along the beam. In optical generators in the steady­
state mode, the value of f3 is determined by the 
losses and is simply equal to c ( 1- r )/Z, where r 
is the reflection coefficient and l the distance be­
tween mirrors. Within a time on the order of 1/{3, 
the field can increase by a factor of several times, 

It follows from (4) and (6) that the gain at the 
frequency is determined by the expression 

(8) 

so that the processes which occur at speeds much 
smaller than f3 have no time to occur. Let the 
spectrum of the incident radiation have a width /::,. 
« {3. Under these conditions, the field fluctuations 
do not influence the amplification and generation. 
When f3 « !::,., to the contrary, it is essential to take 
the fluctuations into account. In gases usually r 
« t 0• In dense media, as is well known, the ther­
mal motion of the atoms does not lead to the Dop­
pler effect, and therefore it is necessary to put 
for crystals t = 0. For illustration, let us give 
the values of the main parameters of a laser op­
erating with a mixture of helium and neon [S]: 

f ~ 107 sec-1, ~0 ~2-109 sec-1, cp ~4-l08 sec-I, 

~~2·106sec-I, A~I04sec-1 • 

We proceed now to analyze particular cases. We 
assume that the spectrum of the incident radiation 
is close to monochromatic, /::,. « r. 

Dense medium, t = 0, very narrow line, /::,. « {3. 
This case was considered in detail by Rautian and 
Sobel'man [2]. The gain at the fundamental fre­
quency is determined by formula (1); the gain at 
the weak sideband frequencies is apparently 
smaller by approximately the magnitude of the 
jump, that is, by the difference between the radi­
ation in accordance with (1) and (9). 

Gas medium, to » r, very narrow line, /::,. « {3. 
The radiation at the fundamental frequency is de­
termined by expression (7). The jump in the gain 
guarantees stability of the monochromatic solution. 

Dense medium, t = 0, width /::,. » {3. In this case 
the fluctuations of the light field are significant. 
The gain at the fundamental frequency is obtained 
by averaging formula (1) (Figs. 2 and 3). The jump 
in the gain drops out. On going to the sideband fre­
quencies the gain decreases monotonically ( stabil­
ity). A typical curve at a medium degree of satu­
ration, when I cp 12 = r 2' is shown in Fig. 4. 

Gas medium, to » r, width /::,. » {3. An-analysis 
of the fundamental formula (8) shows that the mono­
chromatic solution is unstable even for weak de-
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FIG. 2. Decrease in the coefficient of stimulated emission 
resulting from saturation. The abscissas represent the aver­
age quantity x=( I cp\ 2/r 2 ) 7", which is proportional to the 
electromagnetic field incident on the atom. The ordinates rep­
resent the intensity of the stimulated emission, divided by the 
intensity of the incident field, averaged over the fluctuations. 
The upper curve is constructed without account of fluctuations 
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FIG. 3. Decrease in coefficient of stimulated emission re­
sulting from detuning. The abscissas represent the detuning 
in un~f y = \wo - Wf- I I r. The degree of saturation is such 
that I cp 12 = r 2 • The upper curve has been plotted without 
allowance for fluctuations. 
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FIG. 4. Coefficient of stimulated emission as a function 
of the weak-field frequency. Case f3 « t! « r, 'o = 0. The 
abscissas represent the detuning \w0 - Wf- \Jr. Here w0 = Wab 

is the frequency of the main strong monochromatic field and 
wfl- is the frequency of the weak field. The degree of satura­
tion is such that rq;"j2 = r 2 • The upper dashed curve is 
plotted without account of fluctuations (tl « {3). 

grees of saturation. In weak saturation we have 
in first approximation 

6[ (jl~'- I' ~ 4n \ l2 r ~ 1 I (jl" I' ) ~= /iV Pab V 2\;~ (I- r• + (ro,. _ ro!J.)' .(10) 

Let us assume that the frequency of the funda­
mental field coincides with the atomic frequency 
w0• At very weak fields the gain will decrease with 
increasing difference w0 - "~I-' as a result of the de­
tuning. The greatest stability is obtained when WJJ. 
~ w0• In the approximation of linear optics we have 

6[ (jl" [• ~ 4n 2 ...,. ( J~ ( (roo- ro!J.)' ) 
~ = W [ Pab \ v 2\:~ I - 2\;~ . (11) 

Comparing (10) with (11) we see that if the in­
tensity of the main field exeeeds r 4/2 !;"~, the gain 
curve at the sideband frequencies has a minimum 
when w 1-' = w0 and the solution becomes unstable. 
In generators I CfJA. 12 is always larger than r4/2t~. 
and therefore the monochromatic curve will spread 
at least to the damping width r. 

It must be noted that the influence of the fluctu­
ations always decreases the gain, and therefore a 
very narrow line with ~ « {3 is known to be under 
more favorable conditions. Nonetheless, it may 
turn out that the calculations for a strong mono­
chromatic field will lead to certain "natural spec­
tra" with ~ "' r, which will be stable relative to 
weak perturbations. This will mean that in gaseous 
media for the same parameters of the medium 
there are possible two oscillation modes, in one 
of which the spectrum width of the emitted light 
is of the order of the damping width. 

In conclusion I take this opportunity to thank 
S. G. Rautian, I. I. Sobel'man, and L. I. Gudzenko 
for numerous discussions. 
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