FURTHER SEARTH FOR THE $\mu^+ \rightarrow e^+ + e^+ + e^+ DECAY^{1}$

A. I. BABAEV, M. Ya. BALATS, V. S. KAFTANOV, L. G. LANDSBERG, V. A. LYUBIMOV, and Yu. V. OBUKHOV

Submitted to JETP editor September 24, 1962

J. Exptl. Theoret. Phys. (U.S.S.R.) 43, 1984 (November, 1962)

In the authors' previous paper^[1] a search was made for $\mu^+ \rightarrow e^+ + e^+ + e^-$ decay with the aid of apparatus comprising a combination of fast electronic circuitry and spark chambers. Not a single $\mu \rightarrow 3e$ event was observed, and the upper possible limit for the fraction of this process was set at $\rho < 2.6 \times 10^{-7}$ if the matrix element of the process can be considered constant, and at $\rho > 2.0 \times 10^{-7}$ if the influence of the matrix element is considered in second order of perturbation theory.

In the present letter we report new results of an investigation of the $\mu \rightarrow 3e$ decay. The experiment was carried out with the apparatus previously described (see ^[1]). Compared with the previous measurements, the statistics were doubled and now correspond to 1.38×10^9 stopped muons in the target.

In order to be able to classify the events registered by the setup as $\mu \rightarrow 3e$ decays, they must satisfy several kinematic and other criteria, formulated in our earlier paper. Not a single event of this type was observed during the total measurement time (~ 150 h).

By means of additional calibration measurements and calculations with an electronic computer, we obtained more precise values for the efficiency of registration of the $\mu \rightarrow 3e$ decay with our apparatus. The total efficiency (with allowance for counter inefficiency etc) is $\epsilon = 0.012$ if the matrix element of the $\mu \rightarrow 3e$ process is considered constant, and $\epsilon = 0.014$ if the matrix element has the form $|M|^2 = \text{const} \cdot \epsilon_3(1 - \epsilon_3)$, obtained in second order perturbation theory (ϵ_3 is the e⁻ energy). Under the first assumed form of M, calculation by means of the Poisson formula gives with 90% confidence $\rho < 1.45 \times 10^{-7}$, while the second assumption yields $\rho < 1.25 \times 10^{-7}$.

Translated by J. G. Adashko 337

¹)Reported at the Eleventh International Conference on High-energy Physics in Geneva, July, 1962.

¹ Babaev, Balats, Kaftanov, Landsberg, Lyubimov, and Obukhov, Preprint, Inst. Theoret. Exptl. Phys., 1926; JETP **42**, 1685 (1962), Soviet Phys. JETP **15**, 1170 (1962).