
SOVIET PHYSICS JETP VOLUME 16, NUMBER 5 MAY, 1963 

REGGE POLES AND LANDAU SINGULARITIES 

V. N. GRIBOV and I. Ya. POMERANCHUK 

Institute for Theoretical and Experimental Physics; A. F. Ioffe Physico-technical Institute, 
Academy of Sciences, U.S.S.R. 

Submitted to JETP editor July 3, 1962 

J. Exptl. Theoret. Phys. (U.S.S.R.) 43, 1970-1975 (November, 1962) 

It is shown that an infinite number of Regge poles accumulates on the line Re l = - % at the 
energy -It = /ti of any two-particle threshold. This result signifies in particular that the 
invariant scattering amplitude of two spinless particles cannot decrease faster than 1/-!8 
with increasing s at a t corresponding to a two-particle threshold. This statement is a 
consequence of unitarity and analyticity. The proof of the accumulation of the poles requires 
that the range of the interaction be finite at a given energy. It is shown that an interaction 
which is consistent with unitarity and analyticity cannot be repulsive at all distances in the 
nonrelativistic limit. 

IT is known that the scattering amplitude 1> as a 
function of the energy t and the momentum trans
fer s has singularities at the threshold values of 
these variables and on the Landau curves. [1•2] The 
Landau singularities have the remarkable property 
that the threshold value of one variable, say t, 
forms a line in the s - t plane toward which an 
infinite number of Landau curves move when the 
other variable s approaches infinity. On the other 
hand, it has become clear lately that the asymptotic 
behavior of the scattering amplitude for large s is 
determined by the analytic properties of the partial 
wave amplitudes fz ( t) as a function of the angular 
momentum l in the channel where it is the en
ergy. [a] The question now arises how the increase 
in the density of the Landau curves at threshold 
values of t manifests itself in the behavior of the 
singularities of the amplitude as a function of l. 
It will be shown below that at the energy t = ti 
which corresponds to some arbitrary two-particle 
threshold an infinite number of poles approach the 
line Re l = - %. We will also give arguments 
which indicate that a similar accumulation of an 
infinite number of poles will occur at an energy 
corresponding to the threshold of the creation of 
n particles at the line Re l = -% - % (n- 2 ). 

This result in particular indicates that the in
variant scattering amplitude at a value t corre
sponding to an arbitrary two-particle threshold 

1>We use the word "scattering amplitude" for the sake of 
brevity. All our considerations apply to any invariant ampli
tude describing the transition of a two-particle state into a 
two particle state. 

cannot decrease faster than s-1/2 with increasing 
s. This result concerning the decrease of the 
scattering amplitude is a consequence only of 
unitarity and analyticity. In the demonstration of 
the accumulation of the poles one needs to make 
the assumption that the range of the interaction 
is finite at the given energy. 

Despite this clustering of poles it is possible to 
find the asymptotic behavior of the scattering am
plitude for t close to 4p,2 ( p, is the mass of a 7r 

meson). It turns out that the contribution from the 
poles accumulating at the line Re l = - Y2 is oscil
latory even for t < 4p,2• The oscillating behavior 
of the absorptive part of the amplitudes which cor
respond in the s-channel to elastic scattering con
tradicts the unitarity conditions in the s-channel 
since it follows from this condition that the absorp
tive parts of the amplitudes are positive in the in
terval 0 :::: t < 4p,2• [ 4 J From this it necessarily 
follows that the partial wave amplitude in the t
channel in these cases has to have at least one pole 
on the real axis to the right of the line Re l = - t;2 

for 4p,2 - t small and positive. One may consider 
this result to be a purely theoretical argument in
dicating the necessity of !he existence of the vac
uum pole. From the point of view of nonrelativistic 
quantum mechanics the appearance of a pole for 
Re l > - t;2 means that the potential cannot be 
everywhere repulsive ( J urdrcp 2 > o[5J). The 
above assertion indicates that the interaction must 
in this sense be attractive in order to be compat
ible with unitarity and analyticity. 

We now consider the amplitudes for the partial 
waves, fz(t), for the scattering of spinless iden-
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tical particles. For l in the complex plane to the 
right of all singularities of fz there holds [S] 

00 

4 (' ( 2s ) ds f1 (t) = 3t .\ Q1 1 + t- 411• A1 (s, t) t- 4112 , (1) 
4p.' 

where At( s, t) is the absorptive part of the ampli
tude in channel s; Qz(x) is the Legendre function 
of the second kind. For t - 4~2 we have from this 

00 

r (I+ n 
fL (t) = V nz2Lr (/ + "/2) 

(t _ 4 2) 1 \ Al(s, t) d 
fl .) 51+1 s, 

4p.' 

l =1= - (2n + 3) I 2, n = 0, 1, ... (2) 

For such t = 4~2 + o the partial wave fz ( t) obeys 
the unitarity condition 

1 * k • 
zT ![1 (t) - f 1• (t)J = w f1 (t) [I• (t). {3) 

It follows from this relation that cp z( t) = ( k/ w) fz( t) 
for real l has absolute magnitude less than one. 
On the other hand according to (2) cpz(t) is propor
tional to (t-4~2 )Z+t/2. 

If (2) would hold for such l which lie to the left 
of the line Re l = - %. then for sufficiently small 
t- 4~2 the quantity cp z( t) could become arbitrarily 
large. Therefore the integral (2) must lose mean
ing for Re l ~-%.i.e., At(s,t) fort= 4~2 can
not decrease with increasing s faster than 1//S . 
Thus cp z ( t ) for t - 4~2 must have singularities 
not further to the left than Re l =- %. We now 
assume that for Re ~ - Y2 there are only a finite 
number of poles at the points An. Then cpz(t) can 
be written in the form 

_ . ~ r, (t) -S(l-i.,) 
({!t (t) = q;L(t) -t~ ..:..J 1_ J.. (t) e , 

n n 
(4) 

where rn ( t) is the residue of the pole ( r n 
2 An+ttl [4] 

"' ( t- 4~ ) ) , o is an arbitrary number 
greater than zero. Then (pz(t) does not have 
singularities for Re l ~ - Y2 and, owing to the 
factors e-o{l-A) introduced in (4), decreases ex
ponentially as Re l- oo. Furthermore cpz(t) 
can be written in the form (2) if one replaces At 
by At = At - D..Ato where D..At is the contribution 
from the considered poles. The integral contain
ing D..At due to the lower integration limit 4~2 

will be proportional to t- 4~2 • Since the sum 

is finite for t - 4~2 • q; z< t) will also be finite for 
real l because of the unitarity condition. On the 
other hand, (p z has the form 

where x ( l) is an analytic function of l, which can 
be represented for Re l larger than the largest 
Re An as 

If the number of the poles An is finite then the 
function x(l) can be continued into the half plane 
Re l < - % since the line Re l = - % is not every
where covered densely with singularities. In this 
half plane (pz - oo when t- 4~2• This contra
dicts the finiteness of (p z. From this we conclude 
that also At ( s, 4~2 ) cannot decay faster than 1//S, 
and consequently (pz(t) must have singularities 
which do not lie to the left of the line Re l = - Y2, 

in contradiction of its definition. This indicates 
that cpz(t) cannot have a finite number of singu
larities for Re l '='= - % and t - 4~2 • It is easy to 
show that this conclusion does not change if cp z( t) 
in addition has also a finite number of branch 
points for Re l ~ - %. 

This way we find that cpz(t) for t- 4~2 must 
have an infinite number of singularities in the vi
cinity of the line Re l = - %. 

It is easy to see that a similar situation arises 
at any two-particle threshold. To that end it suf
fices to consider the amplitude of an arbitrary re
action in which these two particles appear either 
in the initial or in the final state since all ampli
tudes which are connected by the unitarity condi
tion have common poles. The invariant amplitude 
fab of the transition of two particles into two is 
proportional to k~kb where ka and kb are the 
relative momenta in the initial and final state re
spectively. The amplitude which in analogy to cp 
is restricted in absolute magnitude is 

k•r.; k''• (k k )t+•,, 
'Pab = a tab b ~ a b • 

and consequently at the corresponding threshold t 
( ka - 0 or kb - 0) we meet the same conditions. 
In this connection it is of interest to note the fol
lowing. In a theory which excludes electromagnetic 
interactions there must exist atomic nuclei of ar
bitrarily large mass of the order of mA due to the 
saturation of nuclear forces. Therefore two-par
ticle thresholds must exist at arbitrarily large t. 
This shows that the invariant amplitude At at any 
arbitrary t R:! ( 2mA )2 cannot decrease faster than 
1//S. 
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We now consider the vicinity of many-particle 
thresholds. For that end one may consider the 
partial amplitude for transforming two particles 
into n particles with angular momentum l which 
enters the unitarity condition of the elastic ampli
tude. Such an amplitude in the vicinity of the pro
duction threshold is proportional to 

The amplitude analogous to <Pab which is restricted 
as to absolute value equals ..fk;;_ fab ffb , where 
rb is the phase space for n particles which is 
proportional to 

Therefore the restricted amplitude is proportional 
to 

[t __ (~ m; ) 2 ]~-(1 +an;6). 
i=l 

We believe that such a dependence will lead to the 
appearance of an infinite number of singularities 
on the line Re l =- ( 3n- 5 )/2 for t- (I:mi )2, and 
that this will reflect the accumulation of the Landau 
curves for t = (I:mi )2 and s - oo. In this connec
tion it seems to us that the hypothesis of Predazzi 
and Regge [iJ concerning the symmetry of the Z
plane with respect to Re l = - Y2, a hypothesis 
which does not allow this behavior, can apparently 
not be realized when one considers inelastic proc
esses, since one cannot see how the accumulation 
of Landau curves in the Z-plane at the many-particle 
thresholds could appear. 

In order to investigate in more detail the struc
ture of the singularities on the line Re l = - Y2 for 
t - 4t.t2, we use the energy-independent boundary 
condition for the wave function, which applies in 
the nonrelativistic region t - 4t.t2 for interactions 
that decrease exponentially with the distance. This 
boundary condition usually is applied for integer l. 
We shall continue it analytically in Z. We write the 
wave function in the noninteracting region in the 
form 

'IJlv = jv (kr) + icpv {k) h~l) (kr), 

where 

) -.I rr.x J ( ) h(vll (x) =-.I rr2x H<,tl (x), jv (x = V 2 v X , V 

v = l + %; Jv(x) and H~1>(x) are Bessel and 
Hankel functions respectively. Denoting 
(r¢~Nv>lr=R by Xv we find, using the relation 

(5) 

h(l) - _i_ (e-ir.v]' - ]' ) 
\1 - sin Jtv v -v ' 

that 

crv = - Asin rrv I (I - e-'"vA), 

A = [j: (kR.) - Xvjv (kR.) I I l/-v (kR.) - Xvj_., (kR.) I. 

For k- 0 ( v ~ 0, ± 1, ± 2, ... ) we have 

A = (kR) 2v Xv- v r (1 - v) 
Xv + v l' (1 + v) ' 

(6) 

(7) 

(8) 

(9) 

Xv does not depend on the energy. It follows from 
this that for small k the quantity A oscillates 
around the line Re v = 0 and changes fast in mag
nitude as it departs insignificantly from the line. 
Therefore cp v must have an infinite number of 
poles. 

We consider the region v « 1 more accurately. 
If one expands the factor of ( kR ) 2 ~' into a power 
series of v then the term linear in v can be ex
cluded by a suitable choice of R. Then 

(10) 

where x = ka, and a is the chosen radius. In 
order to remove e-i1Tv in the denominator of {7) 
we consider the region t < 4t.t2• Then the equation 
for the positions of the poles has the form 

.x-2v = 1 + rv2, 

-vT = yv 2 + 2inn, 

From here we have 

x = xa, x = + V 4f-t 2 - t . 
,- = In x2 , n = 0, ± 1, . . . {11) 

'Vn =- 2innh + 4n2n2yh3 • (12) 

This way we have obtained an infinite number of 
complex conjugate poles. Since T - - oo then for 
y > 0 the poles lie to the left of the line Re v = 0. 
We note that in nonrelativistic quantum mechanics 
y 2: 0 for arbitrary potentials since there no 
complex poles can exist for Re v > 0 and t < 4t.t2.[8] 

The case y = 0 corresponds to a potential which 
for small distances grows faster than r-2• 

In the following we shall assume that y > 0. 
The equations (7) and (12) allow the evaluation of 
the asymptotic behavior of A1 ( s, t) for small 
t- 4t.t2 and large s. A1 ( s, t) contains contributions 
from a finite number of poles lying to the right of 
the line Re v = 0 with which we shall not be con
cerned. Denoting the contribution of the poles 
which lie to the left of the line Re v = 0 by A1 ( s, t) 
we obtain 

71 s t = - _!_-. I~~ ioo\. dve'-'v (1 + rv") (13) 
1 ( l ) '2.i v S ' 1 - e '<V (1 + rv2) l 

-100 

where ~ = ln ( sa2 ). We employed (13) in an approx
imate expression for cp v which applies for v « 1. 
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As will become evident later in (13) for large ~ 
only the small values of v are important. By 
closing the integration contour to the left and cal
culating the subtractions we obtain, omitting terms 
of the order 1/T2 and 1//T[ relative to unity, 

~ r 4[12 1 co , 4n:2n2r ) ~ 
A1 = 4n:2 l/ ---. "V ex p (-3 - ~ n sin 2nn-. s ,; LJ . ,; ,; (14) 

n=l 

We now investigate the case ~ » 7 3• Then in 
the sum (14) only one term is important and thus 

- v4fL" i t4n:2rt ) t A = 4n:2 - --,- exp 1--'" sin 2n:-"'-- • 1 s-r' \T3 T 
(15) 

This way we have obtained an oscillatory behavior 
of A1• The consequences of this result have al
ready been discussed above. 

We have noted in this discussion that the inter
action which in nonrelativistic quantum mechanics 
corresponds to repulsion is inconsistent with ana
lyticity and unitarity. Simultaneously, an arbitrar
ily small arbitrary attractive potential is consist
ent with analyticity and unitarity since, as can be 
shown, it leads to a pole on the real axis at l > - t;2 

for t = 41} [9] With decreasing interaction strength 
at t = 41} the pole moves towards l = - Y2• It is 
also of interest to remark that the discussed com
plex conjugate poles move towards - oo in the l
plane as the interaction strengths approaches zero. 
One can derive this result by calculating the quan
tity y which enters in (10) by perturbation theory, 
which is permissible for a weak potential. Then it 
is easy to show that y = g-4 where g2 = - J ur dr. 
From this follows that the asymptotic expression 
for the scattering amplitude (15) has an identically 
vanishing expansion in powers of g2• 

Up till now we have considered the complex 
poles for Re v > 0. The question arises as to how 
the formula (7) contains the possibility of the ap
pearance of poles on the real axis if A 
= av(4t-t2 -t)v equals zero for Re v > 0 and in
finity for Re v < 0. It is clear that the position 
of such poles, cp v• for t = 4t-t2 coincides with the 
poles of av for v > 0 and with the zeros of av 
for v < 0. It is easy to derive from these consid
erations an expression for vn ( t) in the vicinity of 

t = 4t-t2• If one does this for vn ( 4t-t2 ) > 0 then one 
obtains a result in agreement with [4]. By putting 
Cl!v = Pn< v- /3n) and inserting it in (7) one can eas
ily show for the poles with vn( 4t-t2 ) = f3n < 0 that 
Cfv(t) has a pole at 

V (/) = ~ + -1 (4[12 ~I) -~n 
n n Pn SinJtvn 

(16) 

If - f3n equals an integer then 

(t) r:! + -1 (4 2 t)--~ 1 4(12- t (17) Vn = f-'n Pn [.L - n n ----:;;r . 

Comparing (16) and (17) with [4] we see that the 
character of the departure from the real axis is 
given completely by the modulus of v. We remark 
that according to (17) a departure from the real 
axis at v = 0 is possible only if pii1 = 0 which then 
means that the calculation collapses to zero. 

In conclusion we would like to thank Ya. I. Azi
mov, V. B. Berestetskii, I. Yu. Kobzarev, L. B. 
Okun', V. M. Shekhter, and I. M. Shmushkevich for 
useful discussions. 
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