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A method is given for calculating the electronic microparameters of metals (average veloc
ity at the Fermi level, effective electron mass, and frequency of electron-phonon collisions) 
from the results of optical measurements. The microparameters of a-Fe, Pd, Al, and Cu 
are calculated using this method. 

THE present paper describes the method and re
sults of calculations of the electronic microparam
eters for several pure metals using measurements 
of the optical constants (refractive index and ab
sorption coefficient) of these metals [l-4] and theo
retical calculations of their electronic structure. 

All the calculations are based on a fully es
tablished model: it is assumed that the electronic 
structure is such that the isotropic effective mass 
approximation is a valid description of the effects 
involving excitation of the electron system of the 
metal (absorption of heat, thermal conductivity, 
electrical conductivity, excitation with radiation, 
etc.). 

This model implies that we are considering a 
system of free quasi particles which are not bound 
by an internal potential field. The number of such 
particles in unit volume is given by 

00 

N·= S g(E)fo(E)dE, (1) 
0 

where g( E) is the density of levels with energies 
E; f0( E) is the equilibrium Fermi distribution; and 
the zero level of the energy E is in each case dif
ferent. In the Bloch one-electron representation of 
the energy spectrum of a metal the integral is taken 
in practice from the bottom (or the ceiling) of the 
appropriate energy band and integration is carried 
out only within that band. 

For a system described by the effective mass 
approximation, g( E), and consequently also N *, 
depend, in general, on T but if temperatures are 
not too high ( T less or comparable with the Debye 
temperature of the metal) the dependence of g( E ) 
on T is negligible and therefore, in complete anal
ogy with the theory of free electrons, we can as
sume that 

EF 

N' = ~ g (E) dE, (2) 

0 

where EF is the Fermi level energy. 
In the free-electron theory the number of elec-

trons per unit volume is 

(3) 

g (E) = 4:rt (2m)'/, E''• (2:rtti)-3 • (4) 

Hence we have 

(5) 

where VF is the velocity on the Fermi surface. 
In exactly the same way, for a system described 

by the effective mass approximation, we have 

(6) 

In experiments on the excitation of the electron 
system the results are always interpreted (in the 
effective mass approximation) using relationships 
of the type 

B = cD (N*/m*), (7) 

where B is the measured quantity and <I> is a cer
tain known function of N*/m * and several other 
microscopic parameters. It is therefore conven
ient to introduce instead of N* a new "effective 
number of electrons," equal, by definition, to 

Neff = N'm!m'. (8) 

Then from Eq. (6) we find 

(9) 

~r eff defined by Eq. (9) can be calculated inde
pendently from the results of optical measure
ments on metals (see [s,sJ). Thus using the re-
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suits of optical measurements we can employ 
Eq. (9) to determine g( EF ), provided we know 
VF, or to determine VF if we know g( EF ). 

Golovashkin et al [3] measured the optical con
stants as well as the electrical conductivity of the 
same metal samples, and calculated Neff and VF, 
using Eq. (9) to determine g( EF) (see also [GJ). 

In the present paper VF is determined from 
the data on g( EF ), obtained from theoretical 
calculations of the electron structures. Such cal
culations have recently been carried out for sev
eral metals. [ 7- 12] 

We should note an important assumption made 
in the derivation and use of Eq. (9). The assump
tion of the isotropy of the electron structure im
plies an assumption that the Fermi surfaces are 
spherical and therefore the velocities VF on these 
surfaces are constant. In fact, the electron struc
ture of almost all metals (single crystals) is 
anisotropic. Consequently in experiments of this 
type the samples are always polycrystals with 
fine-grained structure. It is assumed that due 
to the random orientation of the single-crystal 
grains in the sample we can use the isotropic 
parameters representing averaging on the Fermi 
surface. Equation (9) now has the form 

- 1 2 ( Neff='= 3 m g (EF) VF, 10) 

where the bar over Neff denotes averaging over 
the Fermi surface. Using the above formula to 
determine VF [or g( EF )] from the data on Neff 
and g( EF) (or VF), we implicitly make an impor
tant assumption that g( EF )v~ is approximately 
equal to g( E F) v~, and we naturally understand 
the velocity at the Fermi level VF to be the root
mean-square velocity (v~ )1/l. 

With these assumptions the velocity on the 
Fermi surface is given by the formula 

VF = Y3N eff/mg(EF) = I0-14 YN effi3g(EF) (11) 

(since m = 9 x 10-28 g). We note that in Eq. (11) 
the quantities Neff and g( EF) can be taken not 
only per unit volume, but also per atom, which 
may be more convenient in calculations. 

Using E = Y2m*v2 we find from Eqs. (4) and (9) 

m· = n Yn3g (EF) I VF = 6.18 ·10-27 YN err/v}. (12) 

For the majority of metals the Fermi level lies 
in the region of overlap of the energy bands of sev
eral zones. For example in transition metals the 
Fermi level lies in the region of the s-band, as 
well as five d-sub-bands. In principle, the elec
trons (or holes) of all these bands should con
tribute to the effects considered. It is not possible 

to allow for the contribution of each band separately. 
Consequently, instead of microparameters of the 
conduction electrons belonging to one band, we have 
to introduce some "weighted average" micropa
rameters. 

Let there be, for example, n bands which can 
in principle contribute to the effects considered 
and assume that the effective mass approximation 
is valid for all these bands: 

E1 = Eoi + p2!2m· ( i = 1, 2, ... , n). (13) 

Each band has its own effective mass m{ and its 
own energy scale with a zero at Eoi· Because of 
these assumptions we have for each band 

(14) 

The value of Neff found experimentally is then 
obviously equal to 

n n 

Neff = 2.] N; eff= ~ 2.] gi (ElF) v7F· (15) 
i=l i=l 

We shall define the weighted-average square of 
the velocity on the Fermi surface as 
_ n ~ n 

v} = 2.] g;(EiF)v~F j 2.] g;(E£F) 
i~l i=l 

n 

= 2_] gi(E;F) VlF/ g (EF), 
i=l (16) 

where g( EF) is the total density of states at the 
Fermi level. Substituting Eq. (16) into Eq. (15) we 
obtain 

Neff = + g (E F) mv} • (17) 

Thus if we know Neff and the total g( EF ), we can 

determine vF = (vt )1/2 from Eq. (17). 
For this weighted-average velocity on the Fermi 

surface we can introduce the corresponding "aver
age effective mass," defined by 

m· = 6.18 · I0- 27 (Neff /v~)'1•, (18) 

and the "average Fermi level energy," defined by 

- 1-.2 
EF= 2 m VF. (19) 

Apart from the microparameters listed above, 
our model can be used to estimate approximately 
(without allowance for the quantum corrections of 
Gurzhi 1> [ 13]) the frequency of electron-phonon 

1lThe quantum correction of Gurzhi can easily be in
eluded.[ 6 • 13 ] However, for room temperatures which are con
sidered in this paper, it amounts to "'10-15%, i.e., it does not 
exceed the error of the calculation method. 



1380 GUROV, LEKSINA, and PENKINA 

collisions "efo As is known, the formula for esti
mating "ef can be obtained from the appropriate 
transport equation 

lqJ<qmax 

of~ip) =A ~ {qdq6 (£ (p + q) 

- E (p) -hvq) [f (t, p + q) (1 - f (t, p)) 

X (Nq + 1) - f (t, p) (1 - f (t, p + q)) Nq) 

+ 6 (E (p- q) 

-E (p) + hvq} [f(t, p- q) (1- f (t, p)) Nq 

dq = - q2dq dcp d£, (25) 

where ~ =cos J and the orientation of the spheri
cal system is selected so that J is the angle be
tween the vector q and the vector (fixed during 
integration) Po Then 

E (p ± q) = p212m* + q212m* ± pq£1m*, (26) 

fo(p±q)=[(:{~.+ 2~.±':~-EF)/kT+ 1]-1· (27) 

Substituting Eqso (26) and (27) into Eqo (24) and 
integrating with respect to cp and ~ we obtain 

- t (t, p) (1- f (t, p - q)) (Nq + 1)1}, 
1 • Qmax 

(20) -r, = 2l1 Amp ~ q2dq{2Nq+ 1 + fo (E + qu) 

where q is the phonon momentum, hvq is the 
phonon energy; for the phonon system we assume 
the simplest dispersion relation: 

hv = qu. (21) 

Here hvmax = k®, qroax = k®/u, u is the velocity 
of sound, ® is the Debye temperature, k is the 
Boltzmann constant, and Nq is the equilibrium 
distribution of phonons (the Bose distribution) 0 

The constant A in Eqo (20) is approximately 
equal [l4] to 

A = ".1.0 1 (2l11i)3 1iMu = 0.36 l'ta3£} 1 (2l11i)3 1iMu, (22) 

where ~ is the volume of a unit cell in the crystal 
lattice (for cubic structures ~ = a3 ), a is the 
lattice constant, C is the average energy of elec
trons ( C ~ Oo6EF ), M is the mass of an atom in 
the crystal. 

Assuming that the deviation of f( t, p) from the 
equilibrium Fermi distribution £0( p) is small, 
we find that the right-hand part of Eqo (20) defines 
the quantity 1/Tp, where Tp is the relaxation time 
for particles with a momentum Po The required 
electron-phonon collision frequency "ef is equal 
to the value of 1/Tp averaged over all momenta: 

T t.. 11 w 11 
lief = T; = (2JtJi)3 .lT; f o (p) dp = (23tli}3 .) T; f o (p) dpo (23) 

After simple transformations Eqo (20) becomes 

1 JqJ<qmax 

-rP =A ~ qdq {6 (£ (p + q)- E (p) 

- qu) r'Nq + fo (p + q)l 

+ 6 (£ (p - q) - E (p) + qu) (N q 

0 

- fo (E- qu)} 

Qmax 

= 2l1A m; ~ q2dq { 2Nq + 1 + 2qu of~~)} 0 (28) 
0 

After laborious but uncomplicated calculations of 
the integrals with respect to q we obtain 

_!__ _ 2 A m*ln6 { 1 + _!__ (~)2 + kT (~)2 ofo (E)} 
-rp - l't pu8 24 T 2 T oE . (29) 

We shall now average 1/Tp using Eqo (23): 

a3 r 1 2l'ta3m* Ak36 2T 
"•f = (2Jtli)• ~ T; f o (p) dp = (23tli)• us 

X ~+dPfo(P) { 1+ ; 4 ( ~ r +k[ ( ~ yat~1£)} 
= 8l'taaa (m*)' Ak3T6z I dEf (£) {1 + ___!_ (.!!._)2 

(2Jtn)3 us .) 0 24 \ T 

+ kT (.!!...)2 ato (£}} 
2 r a£ · (30) 

We note that j£0( E) dE = EF and the function 
af0( E)/BE can be approximated by the a-function 

iJfo (£)I iJE =- 6 (E- Ep). 

Then 
I f (£) ato (£) dE - f (E ) - 1 .)O aE --o p--z:o 

Thus, using Eqo (22) for A we find 

0.36·8l't3a6£} (m*)2 k3T62 

"•I= (2l11i)61iMu4 

I{ 1 ( 6 )2 kT ( 6 )2} 
X I + 24 T - 4£ F T . 

(31) 

(32) 

(33) 

In metals we always have kT « EF, and there
fore we can neglect the third term in the braces of 

+ 1 - f 0 (p - q) )}. (24) Eqo (33)o Finally we obtain 

In integration with respect to q we shall use spher
ical coordinates 

(34) 
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_ 2. 72 -1Q138as (m* )2 T62E} { _!__ (~)2l 
- Mu• I + 24 T j . (35) 

For convenience in calculations we should sub
stitute into Eq. (35) the energy EF, expressed in 
eV, the lattice constant a, in angstroms, and the 
mass ratio a = m */m. Then we find 

(36) 

Using Eqs. (11), (12), and (36) we have calcu
lated the microparameters of a-Fe, Pd, AI, and 
Cu. For Neff we used the optical constants data, 
and for g( EF) we employed the published theo
retical calculations. The table lists values of 
Neff• g( EF) and the results of our calculations. 
For g( EF) we used the published total values 
corresponding to all the energy bands overlapping 
in the region of the Fermi level. The results for 
this case are given in the third column of the table. 
Similar calculations were repeated with g( EF) 
determined from measurements of the electronic 
specific heat [15] (fifth column of the table). For 
a more reliable analysis of the results, calcula
tions were also carried out for values of g( EF) 
solely for the conduction band (fourth column of 
the table). All the results in the table are given 
for room temperature. 

An analysis of the tabulated results indicates 

MetaL Quantity 

that in Pd and Fe the d-sub-bands undoubtedly 
make a large contribution to the effects considered; 
large effective quasiparticle masses correspond
ing to these sub-bands dominate the weighted
average values. There is good agreement between 
the results obtained from specific heat measure
ments and the calculations carried out by the 
method described here. For aluminum the hy
pothesis of Matyass [1o] is obviously confirmed, 
i.e., that in the effects considered one 3p-band 
predominates. 

Simultaneous measurements of the optical con
stants and the static electrical conductivity were 
carried out by Golovashkin et al [a] for aluminum 
and by Padalka and Shklyarevskil [4] for copper 
(evaporation-deposited samples with porous struc
ture). Their results for VF and Vef (without al
lowance for the Gurzhi corrections ) are listed in 
the sixth column of the table. For Al their re
sults agree satisfactorily with ours, if we allow 
for the complex electronic structure of AI for 
which the effective mass method is a very rough 
approximation. For Cu the table indicates excel
lent agreement between our results and those in 
the sixth column. 

Thus an analysis of the tabulated results leads 
to the conclusion that our method, employing ex
perimental results of optical measurements and 
theoretical calculations of electronic structures, 

Values 
b/l <= u 
<= ·a~ ~-,j~ 0 ·o. .8 

0 " ~~a]· a. u .. Ql 

~ " Uf cu ~ 00 0. 

<; '\j Ql u 0JOc:2 <= aJS Ernov.g > rll 0 
0'0 U't:l E u " ei::u't:l<= 
.. <:: a a e & ru .,g~]§8 0 " ""'"' '"'"' """''t:l --

I 
ct-Fe g(E F), eV-1 (per atom) 2.4 [1] 0.2 [7 ] 2.2 

v F .w-s, em/ sec 0,45 1.5 0.47 
(Neff =7.7-1022 cm-3 [ 1 ]) m*jm 6.3 1.0 6:o 

v ef .iQ-14, sec-• O.Ss 1.2s 0.8 

I 
Pd g(EF), eV-1 (per atom) 2.0 [s•'l 0.2 [8•9 ] 4.6 

vF .w-s, em/sec I ~·~ 1.5 0.3 
(Neff = 6.5·1022 em-, [2]) m* jm ;),;) 0.9; 9.2 

v ef .1Q-14, sec-• 15.0 0.94 8.8 

Al g(EF), eV-1(per atom~0.9[10 • 11 ]1 0.4[10•11] 0.5 
v F .w-s, em/sec 0. 9 1,3 1.2 2.8 [3 ] 

(Neff = 7 .4·1022 cm-3 [ 3 ]) 
rn*jm 12.2 11.1 1.4 

v,1 ·10-14, sec-• 3.9 1.5 2.5 0.63 [3 ] 

I 
Cu g(EF), eV-1 (per atom)0,26[ 12] 0.32 

vF ·10-8,cm/sec ' 1.1 1.0 1.4 [4 ] 

(Neff = 4. 95 ·1022 em-, (4 ]) m*Jm 
11.3 

1.5 
v ef ·10-14 , sec-• 0.17 0.25 0,19 [4 ] 
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can, in spite of the very approximate nature of the 
latter, be used to estimate the electronic micro
parameters of metals. The usefulness of such es
timates lies in the fact that they allow us to com
pare the microparameters of various metals and 
analyze the variation of these parameters in dilute 
solid solutions with variation of the concentration 
of the impurity component. 

Concluding, the authors express their gratitude 
to I. B. Borovskil and G. P. Motulevich for reading 
this paper and making several comments. 
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