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We express the rigidity of a system with respect to changes in density and concentration in 
terms of the scattering amplitude in a medium of identical or different particles; this allows 
us to find these amplitudes in a nucleus from the observed values of the rigidity. We have 
obtained expressions which connect the vertex part and the polarization operator with the 
scattering amplitudes at the Fermi surface. We have shown that the momenta at the Fermi 
boundaries for each kind of particle are connected with the densities of these particles 
through the formula for the density of a perfect Fermi gas. We give an estimate for the 
effective mass of the quasi-particles in a nucleus. 

1. INTRODUCTION 

THE only way to obtain quantitative relations be­
tween different quantities in the many-body prob­
lem when the interparticle interactions are not 
small is to use a phenomenological approach, i.e., 
to introduce experimentally determined constants 
into the theory. A similar situation occurs in the 
theory of strong interactions between elementary 
particles when the observed values of masses and 
charges are introduced into the dispersion rela­
tions. 

Landau [t, 2] has shown, using a uniform system 
consisting of one type of strongly-interacting fer­
mions as an example, that one can evaluate all im­
portant properties of the system if the forward 
scattering amplitude of the quasi-particles at the 
Fermi surface is given. This amplitude depends 
solely on the angle between the directions of the 
momenta of the particles and is practically deter­
mined by the first two or three terms in the ex­
pansion in Legendre polynomials. The coefficients 
of the Legendre polynomials are phenomenological 
constants which must be determined from a com­
parison of the theory with experiment. 

To use such a program for the nucleus one needs 
first to extend the theory to the case of systems 
consisting of two kinds of particles. After that one 
must take into account the finite dimensions of the 
system and the influence of pair correlations. Some 
quantities, however, change little when the finite 
dimensions and the pair correlations are taken into 
account. Among such quantities we have the rigid­
ity coefficients with respect to a change in the den-

sity or the concentration [determined in Sec. 7, 
Eq. (51)] and the quasi-particle effective mass. 

We show in Sec. 7 that these coefficients are 
expressed in terms of the spherical harmonic of 
the above-mentioned expansion of the forward 
neutron-neutron and neutron-proton scattering 
amplitudes in terms of Legendre polynomials; this 
allows us to determine these harmonics from the 
observed values of the rigidity (Sec. 7 A). 

The effective mass is expressed in terms of 
the sum of the first harmonics of these two am­
plitudes (see Sees. 6 and 8B). The interaction 
with an external field (vertex part) is, as in the 
case of a system consisting of one kind of par­
ticles, expressed in terms of the forward scatter­
ing amplitude at the Fermi surface of two identical 
and two different particles (Sec. 3C). The same is 
also true of the polarization operator which deter­
mines the change in the quasi-particle distribution 
function under the influence of an external field 
(Sec. 4). As in the case when there is only one 
kind of particle [3•4] the momenta at the neutron 
and proton Fermi boundaries are connected with 
the average densities of these particles through 
the formula for the perfect Fermi-gas density 
(Sec. 5). 

2. EQUATION FOR THE SCATTERING AMPLI­
TUDE 

A. Derivation of the Landau equation for the 
amplitude. The scattering amplitude satisfies the 
equation 
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where the function B(p, q) does not contain a 6-
function dependence on p and up to terms "' k2 /p~, 

(1) we may assume w2!J.L2 to be independent of q. 

FIG. 1 

which in analytical form is 

r (p, p'; q) = u ( p, p'; q) - i ~ u (p, P1; q) 

x a (PI + f) a (PI - f) r (PI, p'; q) <~~). , (1) 

where U indicates all diagrams which do not con­
tain parts joining two horizontal lines. The normal­
ization chosen by us is defined by the fact that when 
the interaction tends to zero U changes to V q. the 
Fourier component of the interaction potential. 
Every line corresponds to the exact Green's func­
tion defined by the expression G = - i ( Tif!( x1 ) if!+ ( x2 )) 

We can split off from the Green function in the 
momentum representation G( p) a pole term 

G (p) = a (p) . + G (p). (2) e-ep- !X. R 

Here E is the fourth component of p reckoned 
from the chemical potential f.J.; Ep the quasi­
particle energy, also reckoned from J.L; K the 
quasi-particle damping coefficient (K- aEI E I 
as E - 0 ) ; a( p) the renormalization of the Green 
function: 

a-1 (p) = (aG-I I ae)E=Ep• a (Po) = a. 

As q - 0 the poles of the two Green's functions 
in the integral of Eq. (1) approach one another and 
there occurs a maximum in the integrand for E 1 

= Ep1; therefore 

o(p+ !L) o(p- !L) 
2 ' 2 

=a2 (p) 6 (e -ep) ~ G0 (p+f) Go(P-·· ~)de+ B (p, q), 

0 0 (p) = le- ep- iaep I e!]-I. 

Evaluating the integral we get 

\ G (P + !L) G (p- .!!...). de = 2:rti no (p -1- k/2)- no (p- k/2) . 
• ) o 2 o 2 w - eP + k/2 + ep - k/2 ' 

fi. IPI<Po 
no(P) = 1 (3) 

~ 0, I PI> Po, 

where Po is the momentum on the Fermi boundary; 
k, w are the spatial and time components of the 
vector q. From the last expression we get easily 

G(p+!L)G(p--!L) = ia 26 (e)·2:rt ~ f'J(/PI-Po) m* 
2 2 w-kv Po 

+ B (p, q) = A + B, (4) 

Turning now to the scattering amplitude we write 
Eq. (1) symbolically 

r = u + uoor = u + roau. (5) 

The last equation is immediately obtained from the 
diagrammatic Eq. (1) if we read it from right to 
left. 

We introduce the amplitude rw as the limit 
r kv /w- 0 - r w. It follows from (4) that 
Akv /w- 0 - A w = 0. Therefore (5) gives 

r"' = U + UBf"' = U + f"'BU. 

Multiplying (5) from the left by 1 + rwB we get 

r = r"' + r"' Ar = r"' + r Ar"'. 

(6) 

(7) 

We get the last equation by multiplying (5) from the 
right by 

1 + r"'B. 

We can get an equation analogous to (7) by in­
troducing the amplitude rk defined by the relation 
r w !kv- 0 - r k. It follows from (7) that 

rk = r"' + r"' Akrk = r"' + rk Akr"'. (8) 

Multiplying (7) from the left by 1 +rkAk we get 

r = rk + rk AT= rk + r ATk, 

A'=A-A". (9) 

Equations (7) and (9) enable us to find the scat­
tering amplitude on the Fermi surface <I pI = I p' I 
= p0; E = E' = 0) as a function of k and w, if the 
functions rw or rk which depend only on the 
angle between p and p' are known. 

B. Equation for the amplitude when there are 
two kinds of particles. One sees easily from 
Eq. (1) that these results also remain valid when 
there are two kinds of particles provided we un­
derstand by r, u, rw, and rk two-by-two mat­
rices in isotopic space. 

Equation (7) thus becomes 

(7') 

where r aa. rit'a are the scattering amplitudes for 
identical particles; and rab. r~b the amplitudes 
for scattering of particle a by particle b. 

We introduce the dimensionless amplitudes 

(10) 
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We get from (4), (7), and (9) 

F (n, n'; q) = F"' (n, n') 

+ 1 ~ F"' ( ) n,kv F( , dot -2 n, n1 --k- n1, n; q) '--, w-v nt ..,, 

F (n, n'; q) = pk (n, n') 

(11) 

where q = w, k; n and n' are unit vectors along p 
and p', and we must understand by F, FW, Fk, and 
v the matrices 

where va and Vb are the velocities at the Fermi 
surfaces of the particles a and b respectively. 

We obtain a connection between Fk and Fw by 
going in the first of Eqs. (11) to the limit w/kv 
------ 0: 

pk (n, n'; q) = F"' (n, n') --} ~ F"' (n, n1) pk (n1, n'):. 

(12) 

C. Dependence on spin variables. Diagonaliza­
tion of the equation for the amplitude. In the ex­
pressions given so far we have omitted the spin 
indices. In equations (11) and (12) one must be­
sides integrating over the direction of the momen­
tum p1 of one of the particles also sum over the 
spin variable of that particle. If we consider the 
scattering amplitude as an operator in the spin 
variables, we must take in (11) and (12) the trace 
over the spin operators acting upon the particle 
over whose momentum we integrate. 

We assume that the dependence of the scattering 
amplitude on the spin operators has an exchange 
character: 

F (n, a; n', a') = f (n, n') + g (n, n') aa~ (13) 

Substituting (13) into (11) and using the equation 

-i-SPa, If"' (n, n1) + g"' (n, n1) aa1] If (n1, n') + g (n1, n') a1a'] 

= r (n, nl) f"' (nl, n') + g"' (n, nl) g"' (nl, n') ao'' 

we get independent equations for f and g: 

f = f"' + \ f"' vkn, f dot , 
,) ffi-VKOJ 4l't 

__ "' \' "' vknt dot 
g - g + J g w - vknt g 4l't ' (11') 

which differ from (11) only by a factor 2 in the sec­
ond term. 

Equation (12) leads to 

One can easily diagonalize Eqs. (11') and (12') 
if we assume that faa= fbb; va = Vb = v. When 
applied to the nucleus this means that we neglect 
the difference between the neutron and the proton 
velocities on the Fermi surface. 

We write 

X= faa+ fab' 

One sees easily that we get for x and TJ the inde­
pendent equations 

(14) 

The same equations we get for the quantity TJ. 
Equations (12') give 

"' k 
k_ "' 11t11l 

TJz - TJz - 21 + 1 ' (15) 

where xz and TJZ are the coefficients of the expan­
sions of x and TJ in a series in Legendre polyno­
mials. We get the same equations also for the 
quantities cp = gaa + gab• 1/J = gaa- gab· 

3. A SYSTEM IN AN EXTERNAL FIELD 

A. Equation for the vertex. The change in the 
Green's function when an external field is included 
is determined by the equation 

,. _ A -c:rpc, 

FIG. 2 

(16) 

where the vertex part tJ is determined by all dia­
grams connecting incoming lines. We can obtain 
for tJ the equation 

FIG. 3 

Here U is the irreducible four-pole introduced in 
the foregoing, y the vertex of free particles with 
respect to the field cp. This equation can easily 
be derived from considering perturbation theory 
diagrams by analogy with what one does when de­
riving the Bethe-Salpeter equation. 

The equation for the vertex can also be written 
in another form: 
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(17) 

FIG. 4 

where r is the reducible four-pole which we ear­
lier called the scattering amplitude. 

The diagrammatic equations (16) and (17) are 
in the usual notation of the form 

a· (P+ f. p- f)= a(p+ t) f! (p; q) cp (q) a(p- f), 
(16') 

f! (p, q) = r- i ~ r (p, p'; q) a (P' + f) rG (P' -f)<~~; .. 
(17') 

These equations remain the same also in the case 
of a system with two kinds of fermions provided 
we understand by f!, y, r, and G two-by-two mat­
rices acting in isotopic space. f!, y, and G are 
then diagonal matrices but r has also off-diagonal 
elements [see (7') ]. 

In the case of a vector field we get by analogy 
with (17) 

f!J. = Pa.l + fpa.yGG, a= 1, 2, 3. (18) 

B. Consequences of gauge invariance. The La­
grangian density for a system which conserves 
particles has the following property which one can 
call gauge invariance. The transformation of the 
quantum operators 

'¥' = eif(r, 1)1f z (1 + if) '¥ (19) 

is the same as the change in the Lagrangian density 

L' = L + ja.at!axa. + pat/at, (19') 

where ja, p is the current density operator satis­
fying the operator identity 

ap!at + aja.!axa. = o. 
This property of the Lagrangian enables us to de­
termine ja and p in terms of quantum operators. 

The change in the Green's function under the 
transformation (19) can be written in the form 

G' = - i (T'¥' (x) 1f'+ (y)) + i (T'¥ (x) 1f+ (y)) 

= - i (T'¥ (x) 1f+ (y)) {eif (x)-if (y) _ 1]. 

On the other hand, the change of the Green's func­
tion under the transformation (19') is, according 
to (16) of the form 

G' = Gl!; (at! ax;) G, i = 1, 2, 3, 4. 

Changing to the Fourier representation and com­
paring the two expressions we get easily 

f!;q; = G-1 (p + q/2)- G-1 (p- q/2). (20) 

This is a result well known in quantum electrody­
namics. For small q it follows from (20) that 

(21) 

In quantum electrodynamics one can conclude 
from (21) that fii = aG-1/Bpi (Ward identity). In 
the many-body problem ffi depends on how q (as a 
function of w/kv) tends to zero and the Ward iden­
tity is thus valid only for a well-defined way of let­
ting q tend to zero which follows from (21), namely, 

ffa.lwfkv->-0 =- aa-lJapa, a= 1, 2, 3; 
ff lkv/w->{) = aa-lJae. (22) 

If q tends to zero in another way the Ward identity 
is not valid. For free particles G - 1 = G01 = E - E~ 
and thus ff~ = Pa and f! 0 = 1 (the free particle 
mass is chosen to be equal to unity). 

From Eq. (17) and the second of Eqs. (22) we get 

f!"' = 1 + r"' (GG)"' = 1 + r"'B = aG-1/ae. (23) 

Similarly we have from (18) 

(24) 

Relations (23) and (24) were obtained by Pitaev­
skil. [4] 

We elucidate now to what consequences the 
gauge invariance leads for a system of two kinds 
of particles. The fact that the transformations (19) 
and (19') are identical is valid for each kind of par­
ticle and we could thus obtain relations, introducing 
two independent fields fa and fb. Instead of that it 
is more convenient to introduce one field f but to 
ascribe to each kind of particle an arbitrary charge 
with respect to that field. 

Putting in (17) 

r = (~ ~) (25) 

and comparing anew the changes in G caused by 
the transformations (19) and (19') we get 

ff~ = (1 + r~aBa) + r~bBbJ.. = aa;/ I ae, 

ff'b = ( 1 + r'bbBb) ').. + r'baBa = J..aO[/ I ae. 

As this equation must be satisfied for all values of 
A. the following identities hold: 

r~bBb = f'baBa = 0. (26) 

Similarly, we get from (18) 

' 
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Pa. + f!aPa. (Ba + A~) = - aaa-1 I aPa• 

Pa + rZbPa (Bb + AZ) = - aa;/ I apa.. 

r!bPa. (Bb + AZ) = rZaoa (Ba + A!) = 0. 

We can write Eqs. (26) and (27) symbolically 

(27) 

raG-We = r + r"'rB, (26') 

- raG-11ap" = rPa. + rkrPa. (B + Ak). (27') 

C. Connection of the vertex with the scattering 
amplitude near the Fermi surface. Equations (17) 
and (18) connect the vertex with integrals contain­
ing the scattering amplitude, where the integration 
is over regions both near and far from the Fermi 
surface. We shall verify that the integrals over 
the far away regions reduce by means of Eqs. (26) 
and (27) to factors aG-1/aE and aG-1/ap which 
are connected with the renormalization of the 
Green's function and with the quasi-particle ef­
fective mass. 1) 

Using the matrix y introduced earlier through 
(25) and Eq. (7) we get easily from (17) 

ff == raG-1Iae + rr AaG-1Iae 

or 

ffb = 'J..i)G!/Iae + 'A[b~baG;1Iae + fbaAaaG;1Iae. (28) 

In (28) the vertex near the Fermi surface (I p I = p0, 

E: = 0) is expressed for arbitrary values of w/kv 
in terms of the amplitudes r aa and r ab on the 
Fermi surface. 

Similarly one can also obtain an expression for 
the vector vertex f) a· From (18) we get 

5""" = YPa. + frPa (A +B); 3~ = Pa 

+ f aaPa.(A + B)a + 'AfabPa.(A + B)b· 

Using Eqs. (8) and (22) we find easily (A'= A -Ak) 

ffa =- raG-lfapa.- frA'aG- 11apa., 

ff~ = - aG;11apa.- faaA~aG;11apa - 'AfabA~aG;11apa., 
ff~ = - 'J..i)G[/Iapa. - 'AfbbA~aGJaPa. - rbaA~aG;11aPa.· (29) 

Introducing the dimensionless amplitude defined 
in (10) and (13) we get easily for the vertex on the 
Fermi surface 

fJ (~) = aa-1 + ~ f (n n ) vkn1 aa-.1 .:':!!!:_ 
k r ac .\ ' 1 r Ol- vkn1 az 41t ' 

(28') 

and similarly 

l)Luttinger and Nozieres[•] have done similar calculations 
for the case of one kind of particles. 

4. POLARIZATION OPERATOR (CORRELATION 
FUNCTION) 

A. Polarization operator for a scalar field. We 
define the polarization operator .'Y"ik by the equation 

(j;) = f!f'i!Az, (30) 

where (h) is the average value of the current aris­
ing in the system under the action of the field Az. 
We first of all evaluate the component f!f' 44 = f!f' 
which enables us to find the change in the density 
under the action of a scalar field 

n' = f!f'fP. (31) 

From the definition of the Green's function 

I • \ G' d4:!fo 
n = - l J (2:n:1• • (32) 

The change in the Green's function G' is deter­
mined by Eq. (16) and we can thus write 

f!f' = (GfG) = (Aff) + (Bff). (33) 

We shall show that the integrations occurring in 
(33) over regions far from the Fermi surface can 
be reduced to renormalization factors and integrals 
over the Fermi surface. 

Equation (28) written symbolically gives after 
substitution into (33) 

f!f' = (oa aa-1) + (oar A aa-1, . az 1 r as ) 

From (17) it follows that the second term can 
be expressed in terms of the difference /ff- y: 

.'f' = (aa .E._a_-1) + (w- r) A aa_-1) = I Baa~'\+ f 5" A aa-1). 
~ ~ I ~; ~ ~ 

The first term on the right-hand side is an inte­
gral of 8G/8E and is equal to zero since G I 

E:=±oo 

= 0. [We note that ;;pw = (( GG )wgrw) = 0 for any 
frequency w since a field which is uniform in 
space does not produce any physical changes.] 
The polarization operator for each kind of par­
ticles is thus expressed in terms of /ff and 
aG- 1/aE on the Fermi surface: 

.'f' = (tf AaG-1Iae). (34) 

To change from the arbitrary formalism to the 
usual one we must use Eqs. (32) and (4). We get 
easily 

1 

.Gfo = 2 \' /lT(x) ~dxam*~o . 
\ w- kvx 4:n:-
~1 

(35) 
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When ff is normalized according to (22) (ff0 = 1) 
the vertex corresponds to the creation of a particle 
and a hole with total spin zero and with a fixed di­
rection of the particle spin; the factor 2 in Eq. (35) 
takes into account the two possible z-components 
of the particle spin. 

B. Vector part of the polarization operator. We 
now evaluate the vector part :'Pa(3 of the polariza­
tion operator. To do this we find the particle cur­
rent arising under the influence of a field Aa. The 
current density is connected with the particle dis­
tribution function through the equation 

ia.(q) = ~ fi~)w (p) Pa. (Z~3 - nAa. (q), (36) 

where fU>(p) is the Fourier component of the first 
order correction to the distribution function and n 
the particle density. 

It follows from its definition that the distribution 
function is connected with G by the equation 

fq(p)=-i~G(p+ ~, p- ~) :~, (37) 

where G( p1, p2 ) is the Green's function in an ex­
ternal field. The correction which is first order 
in Aa is thus equal to 

~~1) (p) 

=- i ~G(p+ ~ )fffl (p, q) Afl (q)G(p- ~) :~ .(38) 

Substituting this expression into (36) we get 

ia.(q) = :'Pa.f3A:x, 

:'Pa.f3 =- i ~ Pa.G(p+ n G (p- n ff13(:~. - n6a.f3· (39) 

Equation (39) is valid for each kind of particle. 
We shall show that the integrals over regions 

far from the Fermi surface can be reduced by 
means of (27) to integrals over the Fermi surface. 
Writing ffa in the form 

ff" = YPa. + fGGyp" 

and using (27) we get easily 

w- ( aa-r ) , ' aa-r ) (pa.GG/i/ f3)a = - Po. -a- GG - ( PaGGfy A -a-
~ u ~ a 

( 
w- , aa-l· 

= - Pa./i/ f3A aso ) . 
P a 

Hence 

The transition to the usual formalism is performed 
in the same way as was done to obtain Eq. (35). 

5. CONNECTION BETWEEN THE PARTICLE 
DENSITY AND THE MOMENTA ON THE 
FERMI SURFACE 

One can show [GJ that the particle momentum 
distribution, n(p ), in systems with arbitrarily 
strong interactions, but without Cooper pairing, 
has a discontinuity for a momentum p = p0• This 
fact enables us to introduce the Fermi boundary 
concept also when there are strong interactions 
between the particles. 

It has been shown [a,4J for a system of one kind 
of fermions that the density of interacting particles 
is connected with the thus introduced momentum 
Po by the same formula as is valid for the density 
of free particles: 

(41) 

We shall show that the result (41) remains valid 
also for systems consisting of two kinds of fermi­
ons. 

Let us consider the change in the density under 
the influence of a static field <Pk with k- 0. The 
equilibrium condition gives 

fla + qJ = const, fl.b + Mp = const, (42) 

where JJ.a and Ji.b are the chemical potentials of 
the particles a and b. At zero temperature the 
density n depends only on JJ.a and JJ.b so that the 
change in the density of the particles a is equal 
to 

n~ = (analafl.a + I, anal~b) qJ ~ fJJ~qJ, 

where, according to (34) 

:'P~ = (cif~A~aG;1/ae). 

(43) 

On the other hand, the vertex is connected with 
the change in the reciprocal of the Green's func­
tion through the relation 

ff qJ = {)Q-1' 

since E in Ga is reckoned from JJ.a; Ga1 changes 
only if the change in JJ.a and J1.b is taken into ac­
count. We find 

(44) 

We write G-1 near E = 0 and p =Po in the form 

G-1 = [e - v (p - Po) 1 I a. (45) 

We have then for E = 0 and p =Po 

(46) 

since the derivatives of G-1 with respect to a and 
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v vanish in the point p = p0, E = 0. 
We find from (35) 

ff'k =- :!Jkm*apofn2. 

Using (43), (44), and (46) we get 

(47) 

where expression (41) for the density of free par­
ticles with a limiting momentum p~ is denoted by 

0 na. 
It follows from (47) that na = n~ + cl> where cl 

is independent of J.l.a and P.b· Since na = n~ as 
Po- 0, i.e., in the case of a sufficiently rarefied 
gas, cl = 0, and hence 

na, b = n~. b· (47') 

6. CONNECTION BETWEEN THE SCATTERING 
AMPLITUDE AND THE EFFECTIVE MASS 

A. Change in the Green's function in a uniform 
field. If on both kinds of particles the same uni­
form vector field of arbitrary frequency acts, the 
system moves as a whole without any internal 
changes. This fact allows us to obtain yet another 
identity for the vector vertex when A = 1 (the 
charges of the particles a and b are the same ) . 

The Lagrangian of a system in a uniform field 
is for A = 1 of the form 

[ = L + ia"A"(t) + ib"A"(t) = L + PA, 

where P is the operator of the total momentum of 
the system. The operator P commutes with the 
Hamiltonian of the system. Since the ground state 
of a system at rest corresponds to the eigenvalue 
P = 0 the ground state function of the system will 
not change under the influence of AOL. 

The change in the quantum operators is deter­
mined by the formula 

t I 

W cc- exp ( iP ~A dt) 11' (r, t) exp (-. iP ~A dt). 
0 

The Green's function G in the field A is thus 
given by the expression 

I, 

G (x1 , x 2) ~- - i ( ct> 01f (x1) exp ( iP ~ Adt) w~ (xJct>0 ) , t1 > t2; 
I, 

t, 

G (x1, x2) 7 ·· i (ct> 01f· (x2)exp(iP~Adt)W(x1)ct>0), t1 < t2. 

I, 

Changing from r 1 - r 2 to the Fourier represen­
tation we get 

t, 

G (p, t1, t2) = G (p, -.:) exp ( ip ~ Adt) 
t. 

for both signs of T = t 1 - t 2 and arbitrary time­
dependence A ( t ) . 

(48) 

We consider A of the form A= A0eiwt and let 
w- 0. Putting t 1 = 0 we get 

~ A d-r: = Ao i"'~- l ->A o-r. 
,\ IW 
0 

We multiply (48) by eiET and integrate over T. 
We find 

G (p, e) = G (p, e + pAo). 

The vertex which is determined by the relation 
(}-1 - a-1 = :!! OLAOL is thus of the form 

:!J~(f.. = 1) = p"aG-1/ae as A" _, o. (49) 

By a different method this relation was obtained by 
Pitaevskil C4J for the case of one kind of particles. 

We emphasize that (49) in contradistinction to 
(22) is valid only for the case where the charges 
are the same for all kinds of particles as far as 
the field A is concerned. 

We assume now that there is imposed upon the 
system a field such that the change in the Lagrang­
ian is of the form 

where aa and <7b are the total spin operators of 
the particles a and b. If the spin-orbit interac­
tion is small [this was presupposed in Eq. (13)] 
the total spin operator commutes with the Hamil­
tonian and, repeating the calculations given above, 
we get 

"'"' _ ~0-1 a-1 _ H aa-! 
JiJ S<ZH<Z = - -a, "'·as' (50) 

where :!! SOL is the spin vertex which is equal to 

Comparing this with (50) enables us to obtain yet 
another relation for rw. Writing rw = r~ 

+ rr>a13a~, we get 

1 + (f~)aaBa + (~)a!ftb = aG~1/ae. (51) 

B. The effective mass. Equation (49) combined 
with (27') enables us to connect the scattering am­
plitude with the effective mass. Indeed, we get 
from (29') 

"'"' aa-1 \' "' aa-1 ao, 
iJ " = r as- v" + ~ f (n, nl) rvlct ae 4n . 

We have used here the relation - aG-1/apOL 
= (aG-1/aE)vOL which follows from (45). 

(52) 
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From (52) it follows for A. = 1 that 

(fi~)a = (aG-1/ae)av~ [ 1 + ~ {f~a + f~bh J, 
where the index 1 on the curly bracket indicates 
the first harmonic in the expansion in terms of 
Legendre polynomials of the dimensionless am­
plitudes introduced in (10) and (13). Comparing 
this with (49) we get 

• - 1 + 1 {f"' f"' } -- 1 l 1 ( "') ma - 3 aa + ab 1 -·- - • - 3 X1 a· (53) 

7. DEPENDENCE OF THE ENERGY OF THE SYS­
TEM ON DENSITY AND CONCENTRATION. 
CONNECTION OF THE SCATTERING AMPLI­
TUDE WITH THE COMPRESSIBILITY COEFFI­
CIENTS 

We assume that the energy density W of the 
system depends in the following way on the densi­
ties na and nb: 

(54) 

where no is the equilibrium density which occurs 
when na = nb and when there are no external fields. 
In the case of a nucleus the second term on the 
right-hand side of (54) leads totheterm J3(N- z )2/A 
in the von Weizsacker formula for the mass defect 
of nuclei. 

The chemical potentials JJ.a and JJ.b are by defi­
nition equal to 

f.la = ooW = 2_15_ (na + nb- 2no) + l (na- nb). na no no 

f.lb = 0
0W = 2K (na + nb- 2no) - .l (na- nb)· 

nb no no 

We introduce the matrix 

D = (o~-talona o~-tafonb) = .2_ (K -i- 2~ K- 2~) . (55) 
o~-tb!Ona o~-tb/onb 2no K - 2~ K + 2~ 

For the following we need the reciprocal matrix 
equal to 

D_1 = (·onafo~-ta ona/011-b) = 2no (2~+K, 2i3-K). (56) 
onb/ofl-a onbfoll-b 8~K 2i3-K, 2i3+K 

Equation (44) together with (46) and (56) gives 

= __!__v_a-~ {2~ · K ·- J.. (2~- K)}. (57) 
aa on~/op~ 8~K -t- -t 

On the other hand, we get from (28') 

ff~ = (aG- 1jae)a [1- U~a + A./~b}ol. (58) 

where the index 0 on the curly brackets indicates 
the zeroth harmonic in the expansion in Legendre 
polynomials. Comparing (57) and (58) for arbi­
trary A. we get 

1- {f~a + f~b} = 1 -X~ = (vp0fn)anof3K, 

1 - {f~a - f~b} = 1 - T]~ = ( vpofn)anof6~. (59) 

8. APPLICATION OF THE THEORY TO THE 
NUCLEUS 

A. Determination of the zeroth harmonics of the 
scattering amplitude in the nucleus. Equations (56) 
allow us to find the zeroth harmonics of the scat­
tering amplitude from the experimental values of 
the rigidities t3 and K. [ 7] Putting Eo = vp0 /2 
~ 30 MeV, t3 = 25 MeV, K ~ 25 MeV [we note that 
K as defined by Eq. (51) is ten times less than the 
value of K introduced in C7J] we get from (56) 
(for na = llb = no ) 

TJ~ = 1- eof3~ = 0.6, X~ = 1 - 2eof3K = 0.2; 

{f~a}o = 0.4, {f~b}o = - 0.2. 

Using Eq. (15) we can find the quantities x~ 
and 17~: 

X~ = X~/(1 -X~) = 0.25, 

u::a}o = 0.9, 

T]~ = T]~/(1 - TJ~) = 1.5; 

{{;;b}o = - 0.6. 

One can show that the quantity 17~ determines the 
effective charge of the quasi-particles for single­
particle low-energy dipole transitions. The large 
difference between the quantities fk and fW shows 
that the approximation of binary collisions in the 
nucleus is not at all in accordance with actual facts. 

B. Estimate of the higher harmonics. The quasi­
particle effective mass in the nucleus is determined 
by Eq. (52). Since the region where the function 
xw (x) changes appreciably is of the order of unity 
we must expect that 

x~ ~ x~l(2l + 1). 

We get thus from (52) 

m·- 1 ~ x~/9. 

This estimate gives, of course, only an order of 
magnitude. 
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