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Asymptotic representations of the type of those of Gell-Mann and Low[2J are obtained for 
the electron Green's function and the vertex function as regularized according to Dyson, 
with the dependence on the fictitious photon mass A.0 taken into account. The derivation 
is based on the renormalizability of quantum electrodynamics and the existence of limits 
of the unrenormalized functions for zero values of the electron mass and the fictitious 
photon mass A.0• Consequences of the asymptotic representations which follow from the 
assumption that the functions can be expanded in power series in e2 are considered. 

l. The asymptotic properties of the Green's func
tions and the vertex function in the high-momentum 
region have been studied in a number of papersP-7J 

Gell-Mann and Low have obtained the following 
asymptotic representations for the photon and elec
tron Green's functions as regularized according to 
Dyson: 

d (k2fm2 , e2) = e-2F ('ll (e2) k2/rri2), I k2 l ~ m2 , (1) 

s (p2jm2 , e2) =A (e2) H ('P (e2) p2fm 2), [p2[~m2, (2) 

where F, 1/J, A, H are unknown functions. In this 
work, however, no account was taken of the fact 
that both the electron Green's function as regu
larized according to Dyson and the vertex function 
have infrared divergences. If we proceed in the 
usual way to remove the divergence by ascribing 
a "mass" A.0 to the photon, then s will depend on 
A.0, and therefore the problem arises of finding the 
asymptotic representation of s with the dependence 
on A.0 taken into account. 

It is also an interesting problem to find the anal
ogous representation for the vertex function. 

Both of these problems are solved in the pres
ent paper. We shall show that the following asymp
totic representations hold for the regularized 
electron Green's function and vertex function 1>: 

11-lere and in what follows we mean by s and r respec
tively any of the scalar dimensionless functions in terms of 
which the complete electron Green's function and the com
plete vertex function can be expressed. The photon Green's 
function is chosen in purely transverse form, and the corres
ponding scalar function is denoted by d. 

( A~ 2) 2 p2 \) s (p, m, "-o• e2) = r m" 'e H ('P (e) m2, ' 

where r, H, B are unknown functions and ljJ is 
connected with d by the relation (1). 

(3) 

We note that the results (3) and (4) cannot be 
obtained by direct use of the method of Gell-Mann 
and Low. In the present paper we develop a some
what different method, which is of greater general
ity. We start from Dyson's relations (5)-(8), which 
express the renormalizability of quantum electro
dynamics, and the fact that there exist finite limits 
of the unrenormalized functions for m - 0 and 
A.o- o. 

These assumptions are sufficient for the deri
vation of both the results (3) and (4) and the for
mula (1) for the transverse function d. 

The great generality of these assumptions al-
lows us to suppose that the asymptotic representa
tions (1), (3), and (4) are valid both within and out
side of the framework of perturbation theory. If 
we further assume that d, s, and r can be ex
panded in power series in e2, then on the basis 
of Eqs. (1), (3), and (4) we can get more detailed 
information about these functions. For example, 
this postulate alone is enough to determine the 
asymptotic form of the function d up to a constant. 
Furthermore the actual expansion parameter is not 
e2, but e2 ln(k2/m2 ). This conclusion, which is 
usually obtained on the basis of concrete perturba
tion-theory calculations, is thus a consequence of 
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the extremely general assumptions indicated above. 
What has been said also applies in equal degree 

to the function H(lf!(e2)p2/m2 ), which·expresses 
the dependence of the function s on p2• Much less 
detailed results can be obtained regarding the ver
tex function, because of the greater arbitrariness 
in the representation (4) as compared with Eqs. (1) 
and (3), which is due to the larger number of argu
ments in r. 

2. Dyson's relations [SJ connecting the regular
ized functions d, s, and r and the renormalized 
charge e with the corresponding unregularized 
functions do, so. and r 0 and the "bare" charge 
e0 can be written in the following form 

d0 (k, m, A, e~) = Z3 (m, A, e2) d (k2/m2 , e2), (5) 

S0 (p, m, "-0, A, eg) = Z (m, "-0, A, e2) s (p, m, "-0, e2) (6) 

(7) 

(8) 

Here A is an invariant cutoff momentum; the ab
sence of the argument A in the regularized func
tions expresses the fact that they remain finite for 
A---. oo. The mass renormalization has been car
ried out in the functions d0, s 0, and r 0, but they 
are not completely regularized and diverge for 
A- oo. 

From Eqs. (5)-(8) there follow the relations: 

d (k2/m2, e2) !d (q2/m2, e2) 

= d 0 (k, m, A, e~)ld0 (q, m, A, e~), 

s (p, m, /;0 , e2 ) 

so~Ao, ei) 
So (p, m, Ao, A, e~) 

So (q, m, Ao, A, e~) ' 

r (p, q, m, /;0 , e") l'o (p, q, m, "-o, A, c~) 
f(p-~q', m, A.o, e') r ( · • ' A ") ' 0 p , q , m, 1\0, , eo 

s (k, m, "-o· e2) r (p, q, m, },0, e2) 

(9) 

(10) 

(11) 

= s0 (k, m, "-0, A, eg) f 0 (p, q, m, "-0, A, eg), (12) 

e2d (k2/m2 , e2)=e~d0 (k, m, A, e~). (13) 

As is easily verified, the integrals correspond
ing to the Feynman diagrams for do, so, and r o in 
any order in e~ have limits both for m ---. 0 and 
for A.0 ---. 0 (limits of s 0 and r 0 for A.0 ---. 0 exist 
only if p2 ,c m 2, q2 ,c m 2, and we shall assume 
these inequalities ) . 

The quantities So and r 0 will have finite limits 
for A.0 ---. 0 also if by the use of the relations (8) 

they are represented as functions of e2 (instead 
of e~), since Eq. (8) does not contain A.0• From 
this one easily concludes that the left members 
of Eqs. (10), (11), and (12) also have finite limits 
for A.0 ---. 0, whereas it is known that the terms 
of the perturbation-theory series for s and r 
themselves do not have such limits. This means 
that the dependence of s and r on A.0 must be of 
the form 

s (p, m, A.0 , e2) = r ("-'f/m2 , e2) t (p 2/m2 , e2), (14) 

( t,~ ) ( pq p2 q2 ) r (p, q, m, "-o• e2) = a fii2, e2 ~ fii2' m2' m2' e2 

(I p2- m21, I q2- m21 ~ "-~), (15) 

and also we can suppose that 

r ("-'f/m2 , e2) a ('A~/m2 , e2) = 1. (16) 

Furthermore, the limits of the quantities d0, s 0, 

and r 0 for m ---. 0 will also exist if they are rep
resented as functions of e~ = e0d0( A., m, A, e~) 
( instead of e~ ) , since in d0 we can set m = 0. 

On the other hand, by Eq. (13), 

(17) 

Therefore we can assert that also the left mem
bers of Eq. (9)-(12), when by means of Eq. (17) 
they are represented as functions of e~ instead 
of e2, have limits for m- 0. 

We thus arrive at the following asymptotic 
functional equations in the high-momentum region 
(all scalars, k2, p2, pq, etc., large in comparison 
with m 2 ): 

(18) 

(19) 

( k2 2) (pq p2 q' 2)- (pq p2 q2 k' 2) 
t fiil• e [3 fiii• fiii• fii2• e - h 'JJ• 1:2 , 1:2 , f:'• e~. , (21) 

where certain unknown functions appear in the 
right members and the connection between e~ and 
e 2 is given by the relation (17). 

The solutions of the equations (18) and (19) are 
of the forms [2]: 

e2d (k2/m2 , e2) = F (1P (e2 ) k2/m2), (22) 

t (p 2/m2 , e2) =A (e2) H (1P (e2) p 2/m2), (23) 

where F, If!, A, H are arbitrary functions of one 
variable. 

When Eqs. (22) and (23) are used it follows from 
Eqs. (20) and (21) that 
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where B is some function of three variables. 
Using Eqs. (14)-(16), (23), and (24) and includ

ing A ( e2 ) in the function r, we find that in the 
high-momentum region s and r have the struc
tures (3) and (4). 

3. In the derivation of the asymptotic represen
tations (22), (3), and (4) perturbation theory is es
sentially used only in the proof of the initial rela
tions (5)-(8), which express the renormalizability 
of quantum electrodynamics. If it turns out that 
renormalizability is not connected with the use 
of perturbation theory, then this will also be true 
of the results (22), (3), and (4). 

If, on the other hand, we remain within the 
framework of perturbation theory and assume that 
the functions d, s, and r can be expanded in power 
series in e2, then we can get additional information 
about them from Eqs. (22), (3), and (4). 

Let us first consider the function d. We write 
Eq. (22) in the form 

e2d = <D (<p (e2) + x), x = In (k2/m2). (25) 

It follows from Eq. (25) that 

(26) 

Substituting in Eq. (26) the expansions 

co 

(27) 
n=O 

co 

[<p' (e2) J-1 = ~ e2mam, (28) 
m=o 

we find that a0 = 0 and 
n 

d~ (x) = ~ (m + 1) Un-mHdm (x) . (29) 
m=O 

Using the fact that d0(x) = 1 and taking x » 1, we 
find that a1 = 0 and 

dn (x) = (a 2x)" + 0 (x"-1). (30) 

Thus for ln ( k2 I m 2 ) » 1 the actual expansion 
parameter in Eq. (27) is e2ln(k2/m2). 

This fact is usually derived from the results of 
concrete calculations made with perturbation the
ory. Here we have shown that it follows automat
ically from Eq. (22) if we make the additional as
sumption that the function d can be expanded in 
power series in e2, and thus that it is connected 

2lThis matter has also been treated by Eriksson[•] by 
means of the method of the renormalization group. 

with the renormalizability of quantum electrody
namics.2> 

Substituting Eq. (30) in Eq. (27) and summing, 
we get 

d (k2/m2, e2) = [1- a 2e2 In (k2/m2)]-1 • (31) 

Comparison with the result of calculations in first 
approximation in e2 gives a2 = (311')- 1, and wear
rive at the well known formula first obtained by 
Landau, Abrikosov, and Khalatnikov. [t] 

When we confine ourselves to the main term in 
Eq. (28) we easily find that 

In '\jJ (e2) = <p (e2) = - 1/a2e2 = - 3n/e2 • (32) 

Let us treat the function s in an analogous way. 
For this purpose it is more convenient to use the 
following representation, which is equivalent to 
Eq. (3) 

s (p, m, A-0 , e2) 

= r'(A.'fjm2, e2) H ('¢ (e2) p2/m2) H-1 ('¢ (e2)). (33) 

It is easy to show, in analogy with Eq. (31) that 
with the assumption of expansibility in series and 
keeping only the leading powers of ln ( p2 /m 2) in 
each order in e2 we get the following result: 

(34) 

s (p, m, "-o• e2) 

(35) 

From a comparison of Eq. (35) with the results of 
calculations in the first orders in e2 ( cf. [ 4,6]) 

we find 

c = -3/32n, 

Let us now turn to the vertex function. We write 
Eq. (4) in the form 

r = ,-1 (A.'fjm2, e2) b (<p + x, <p + y, <p + z), 

<p = - 3n/e2 , x = In (pq/m2), 

y = In (p2/m2), z =In (q2/m2). (36) 

The fact that b is an unknown function of three 
variables keeps us from reaching such definite 
conclusions about r as we reached about d and 
s on the basis of Eqs. (22) and (33). For definite
ness let us consider the case in which I pq I » I p2 I, 
I q2 l » m 2• In an approximation using only terms 
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of the type ( e2L2 )n [ L is a general designation for bility of going to the limit m - 0 in the functional 
large logarithms of the type of ln ( pq/p2 ), ln ( p2 /m 2 ), equations of the renormalization group that is the 
and so on], Sudakov [SJ obtained for this case the decisive fact that allows one to determine by means 
following result: of these equations the asymptotic forms of the 

(37) 

One cannot obtain this result on the basis of 
Eq. (36), knowing only the first terms of the ex
pansion in e2, since each term of the expansion 
(37) has the structure (36) to the accuracy consid
ered. The representation (36) does, however, allow 
us to improve the result (37) somewhat. In fact, an 
obvious extension of Eq. (37) which corresponds to 
Eq. (36) and is symmetrical in y and z is 

{ 3 (x- y) (x- z) } 
fa=raexp 7(l(<p+x)+l3(2<p+y+z)' (38) 

where a + 2{3 = 1. Keeping only terms of the types 
( e2L2 )n and e2L( e2L2 )n, we get 

I'" = r a {I - 6~.In I ~ lin I ~ j (a In I ~ I + 13 In I P:t I)} 
X exp (- ;: In I~ I In I~ I) . (39) 

For a = 0, {3 = % this result is in agreement 
with the result obtained by Vaks [?J by direct cal
culations. 

It must be emphasized that in Eq. (39) we have 
taken into account not all possible terms of the 
type e2L( e2L2 )n, but only those associated with 
the contribution from vacuum polarization. 

4. In conclusion we point out that the use of the 
Dyson relations (5)-(8) and of the fact that the un
renormalized functions have finite limits for m 
- 0 also allows one to prove ( cf. [tO]) the exist
ence of finite limits for m - 0 of the generalized 
Green's functions and vertex function introduced 
by Bogolyubov and Shirkov, [3•4] which are used in 
the formulation of the renormalization group, which 
has for its purpose the improvement of the pertur
bation-theory formulas. It is precisely the possi-

Green's functions 3> in the high-momentum region. 
The writer is deeply grateful to Professor A. I. 
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