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A molecular theory is developed to describe the spectrum and intensity of Rayleigh scatter­
ing of light in liquids or dense gases; this analysis does not make use of the thermodynamic 
theory of fluctuations. The spectral density of the scattered light is found to be the four­
dimensional Fourier transform of a space-time molecular correlation function of the scat­
tering system. This same function can be used to describe the kinetic characteristics of the 
system, i.e., the correlation and autocorrelation functions of the density fluctuations. This 
correlation function can itself be expressed in terms of an inverse four-dimensional Fourier 
transform of the spectral density of the scattered light. Using single-isotope lamps or lasers 
as light sources it should be possible, in practice, to transform the scattered light spectrum 
into a space-time correlation function and thus to obtain detailed information on molecular 
structure and molecular motion in liquids. 

1. INTRODUCTION 

THE theory of Rayleigh scattering of light in gases 
and liquids has been treated at great length ( cf. re­
views and monographs [i-4J). As applied to liquids 
the existing theory is essentially thermodynamic 
and is not directly connected with the details of the 
interaction and motion of the molecules or the mo­
lecular ordering. This approach is valid because 
wavelengths in the visible light region are appre­
ciably greater than intermolecular distances or 
the dimensions of the regions of approximate order 
in liquids. However, it is still desirable to formu­
late a more detailed molecular theory which, in 
principle, would provide the possibility of obtain­
ing detailed information on the molecular structure 
of liquids from experimental data on the intensity 
and spectral composition of the scattered light. 

In the present work we have developed a mo­
lecular theory to describe the spectrum of Ray­
leigh scattered light in liquids and dense gases. 
It will be shown that the experimental data can be 
used to obtain the extremely important space-time 
correlation function of the system particles. 

The present work was stimulated by a paper by 
van Hove [5] on the scattering of neutrons in liquids. 
In some sense the present work is a "translation" 
of van Hove's analysis from the language of neutron 
scattering to the language of light scattering. A 
translation of this kind is extremely desirable be­
cause recent developments in optics provide the 
possibility of precise optical spectral measure-

ments that are not possible in neutron spectro­
scopy. 

2. VAN HOVE CORRELATION FUNCTIONS 

Below we shall require the two special space­
time correlation functions for the particles in a 
fluid, introduced in [5]. We first define briefly 
these functions and determine their basic proper­
ties. For simplicity we assume everywhere in the 
present work that the molecules of the liquid are 
spherically symmetric and that the molecular po­
sitions are given completely by coordinates of the 
molecular center of mass. The liquid as a whole 
is assumed to be in equilibrium. 

Assume that there are N molecules in a volume 
V and let Ri ( 0) ( i = 1, 2, ... ) denote the position 
of a particle at some initial time and Ri ( t) the 
positions at some other time. We consider the 
two functions 

G1 (r, tj r 0 , 0) = ~( 2] {) (r- r 0 - R; (t) + Rt (0))). 
l<J<N 

(1) 

0 2 (r, t) I r~, 0) 

= N (~v_ i) < 2] 6 (r- r~- Rt (t) + Rk (0))> (2) 
l<;i<k<N 

where the angle brackets ( ) denotes an average 
over a Gibbs ensemble for the initial (i.e., t = 0) 
state of the system. It is evident that as a conse­
quence of the isotropy of the liquid (neglecting 
surface effects ) 
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G1 (r, tl r0, 0) = G1 (J r- rol. t), 

0 2 (r, t I r~, 0) = 0 2 (I r- r~ /, t). 

The function G( r, t) is a very important char­
acteristic of the kinetic properties of a system; 

(3) using this function we can find the correlation 
functions and autocorrelation functions of additive 

The function G1 ( r, t) describes the mean trans­
lational motion of a single particle, i.e., its self­
diffusion. By the definition in (1) it represents the 
conditional probability density that an arbitrary 
particle of the system will be at point r at time t 
if it is at r 0 at time t0, regardless of the posi­
tions of the other particles: 

dw (r, tl r0 , 0) = G1 (I r- rol• t) dr, (4) 

where the following normalization holds 

functions of particle coordinates and velocities. 

3. DERIVATION OF THE BASIC EQUATION FOR 
THE SPECTRAL INTENSITY OF THE SCAT­
TERED LIGHT 

Suppose that on our system is irradiated by a 
plane monochromatic light wave with electric 
vector 

E (r, t) = Eoei(k,r-w,l) . (13) 

~ G1 (I r I, t) dr = 1. 
(V) 

(5) This wave produces a dipole moment density given 
by 

The definition of G1(r, t) also implies certain lim­
iting properties: 

G1 (I rl, t)-+ 6 (r) for t __, 0, 
G1 (I r1, t)--+ 1/V fort-> oo or I rl--> oo. (6) 

In similar fashion the function G2 is propor­
tional to the conditional probability density that 
a particle will be at r at time t if some other 
particle is at ro at t = 0, regardless of the posi­
tions of the other particles: 

p (r, t)= aE (r, t) ~ o (r- Ri (t)), 
l~i~N 

(14) 

where a is some effective polarizability of a 
single molecule in the field of neighboring mole­
cules; a is assumed to be independent of frequency 
(or weakly dependent) near w0• The field of the 
scattered wave can be described by the Hertz vec­
tor Z(R, t): 

E' (R, t) = grad div Z- ~ ~;~ (15) 

dw (r, tl r~. 0) = v-1 0 2 (I r- r~l. t) dr, 

where the following normalization holds 

(7) where 

4i ~ 0 2 (/ r- r~ I, t) dr = 1. (8) 
(V) 

The function G2( I r I, t) is a time-dependent gen­
eralization of the radial distribution function G( I r I> 

well-known in statistical theory[G, ?] and, in fact, 
approaches the latter as t- 0: 

Gz (I r I, t) --+ g (/ r I) for t __, 0. (9) 

At long times or large distances 

G2 (I rl, t) ...... 1 fort__, oo or I r/- oo, (10) 

We also note that as a consequence of the re­
versibility of the equations of mechanics the func­
tions G1 and G2 exhibit the property 

G1 (I rJ,- t) = G1 (J rl, t), Gz (I rl,- t) = Gz (I rJ, t). (11) 

Below we shall encounter the sum 

N-1 
G(/rl,t) ~ G1 (lrl,t)+-v-Gz(/rl,t). (12) 

To order N- 1 this quantity represents the con­
ditional probability density of finding a particle at 
time t at some point, a distance r from the loca­
tion of any (the same particle or any other) par­
ticle at t = 0. 

(16) 

The solution of this equation in terms of retarded 
potentials is 

z (R, t) = ~ dr' r dt'l~,(~ ~)16(t'- t +- Lr'-; R 1). (17) 
(V) -00 

If the o-function is expanded in a Fourier integral, 
using (15) and (17) we find in the wave zone 

00 

E'(D t)=-a-(E _(EoR)R) \ dr (' dt' (' doo' oo'2ei(k,r-w,t') 
~. 2Jtc2R 0 R2 ,\ ,\ ,\ 

(V) -00 co 

X exp {ioo'(t'- t +-~- :;)} ~ 6 (r -Ri(t')). (18) 
l~;i~-;N 

As is well-known, [a] the spectral intensity of 
the scattered light is related to the Fourier com­
ponent of the expansion 

co 

E'(R, t) = ~ dooeiwt E(R, oo) (19) 
-CO 

by the relation 

I'(R, oo) = 2cT IE' (R, oo) 12, (20) 

where T is the time of arrival of the light. Carry­
ing out the required calculations in (18), substitut-
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ing the results in (20), and averaging both sides of 
(20) over a Gibbs ensemble for the initial (i.e., 
t = t') particle distribution we find (recalling the 
definitions of the functions Gl> G2, and G) 

00 

, rJ}m4N . 2 \' (' 
I (R, w) = 2nc"R'I0 sm r ,\ dr .\ dt 

(V) -oo 

X exr{i (ko- ~i) r- i (w0 - w) t} G (I rJ, t), (21) 

where 10 is the intensity of the incident radiation 
and cos y = I E0 • R 1/RI E 0 1. 

After simple substitution for the time variable 
we write the inner integral in the form 
00 

~ dtexp{i(ko-~o;)r-i(w0 -w)t}G(Irl,t +-:~), 
-00 (22) 

and expand G in powers of (r·R/cR). As a con­
sequence of the properties given in (11) it is found 
that the first correction to I' is of order (vIc )2, 

where v is the mean velocity of the molecular 
motion. Since the leading term in I' gives a very 
small effect ( scattering of light on a pure liquid ) 
it is clear that the corrections can be neglected 
completely. Introducing the notation 

(23) 

in place of (21) we have 
00 

/'(R,w)=~~~:ZJ0 sin2 r\ dr ~ dteuu-ixrG(irl,t). 
(Vi _:oo (24) 

The difference between (21) and (24) is the fact that 
K and Q are independent in the latter. 

Thus, to within a constant I'(R, w )/w4 sin2 y is 
the four-dimensional Fourier-transformed corre­
lation function of van Hove. If we eliminate scat­
tering at zero angle ( K = 0) in Eq. (24) the func­
tion G can be replaced by G - 1. After this it is 
convenient to extend the integration over dr over 
all space; this procedure is possible because 
I G(i r I, t) - 11 falls off rapidly with increasing I r I 
for all t. Finally, carrying out the integration over 
angle we find 

00 

I ' (R ) _ 2:c.2w4N I . 2 (' 2 d sin xr 
, (!) - ~ 0 sm r ,\ r r xr 

0 
oo· 

x ~ dt (G (r, t) - 1) eint. 
-::>0 

(25) 

It is interesting to compare this result with the 
results of the static theory, in which the time de­
pendence of the correlation functions is ignored. 
If G(r,t) is replaced by G(r,O) in (24) or (25), 
we find from (6) and (9) 

G (r, 0) = 6 (r) + g (I r l)fv, (26) 

where v = V /N; then we obtain in place of (25) the 
familiar result [6, 7J 

I' (R, w) =a.:;;~ l 0 sin2 y6 (w- w0) 

X { 1 + ~n ~ (g (r) - I) si:,"' r2dr}. (27) 

Thus the static theory does not exhibit a change in 
the frequency of the light in scattering whereas the 
present dynamic theory leads to a finite width of 
the scattered light spectrum. It can be shown that 
to order (v/c )2 both expressions (25) and (27) 
yield the same total scattered light intensity. 

This last result can be used to obtain a better 
value for a in our expressions. For visible light 
the function (sin Kr )/ Kr is essentially equal to 
unity over the entire region in which g( r ) - 1 is 
nonvanishing. Hence, we set (sin Kr)/Kr equal to 
unity in (27); then, using the well-known expres­
sion [6] 

~T = _v_{} + ~r (g (r)- 1) r2 dr\, (28) 
ksT v ~ J 

where f3T is the isothermal compressibility of the 
system, in place of (27) we have 

' ct2m• NksTf>r . 
I (R,w)=c"R2 v 1 0 sm2 r~(w-w0). (29) 

Comparing this with the familiar result of the phe­
nomenological theory [l-3] we find 

(30) 

where E is the dielectric constant, whose temper­
ature dependence is neglected. 

4. DISCUSSION OF RESULTS 

At the present time the function G(lr I. t) can­
not be computed theoretically because of the usual 
difficulties arising in the solution of the exact ki­
netic equations for the correlation functions in a 
liquid. Hence, in the general case a theoretical 
calculation of the scattered light spectrum by Eq. 
(25) is still not possible. For purposes of illus­
tration, however, we can consider the case of a 
rarefied gas. If particle collisions are neglected 
completely, then G2 = 1 and G1 can be obtained 
directly from the Maxwellian molecular velocity 
distribution 

. ( m )'I, { m I r 1
2 } G1 ([ r I' t) = 2nksTt' exp - 2ksTt• ' (31) 

where kB is the Boltzmann constant and T is the 



THEORY OF RAYLEIGH SCATTERING OF LIGHT IN LIQUIDS 1361 

temperature. Substituting in (25) we find 

{ m((l)-(l)o)2} 
x exp - 2ksTx2 • (32) 

This is the correction expression for the scatter­
ing of light in an ideal gas (taking account of the 
Doppler effect) and can be easily obtained from 
elementary considerations. 

In our opinion, the true importance of (25) for 
condensed media is not that the spectrum of scat­
tered light can be computed from G(r, t), but 
rather the fact that the inverse problem can be 
solved. Using the notation 

I' (R, w)// 0 Nw4 sin2 r = S (K, w), (33) 

and (25) (after eliminating scattering ar zero angle) 
we find the inverse Fourier transformation 

00 

G (I r I, t) - I = (2~8112 ~ dY. ~ dQe-1<0 t-xr) S (x, w) (34) 
-00 

or, integrating over all directions K, 

00 00 

r (G(I r 1. t)- I) = (2;)2112 ~ xdx sin xr ~ dQe-ifl1S (x, Q). 
0 _.00 (35) 

All the presently available information on mo­
lecular structure (approximate order ) for actual 
simple liquids is based primarily on the interpre­
tation of x-ray patterns of liquids in terms of the 
radial distribution function g( r ). [6•7] The corre­
sponding equations, which relate g(r) with the in­
tensity of x rays scattered at a given angle, are 
obtained from (34) by going to the static case t = 0. 
Our results in (34) or (35) appear as a natural dy­
namic extension of this familiar static theory. 

Just as the Fourier transformation of the angu­
lar dependence of the intensity of the scattered x 
rays gives us the equilibrium radial particle dis­
tribution function for the liquid g( r ), the double 
Fourier transform for the angular and frequency 
dependence (35) of the scattered light can give the 
space-time correlation function G(lr I. t). The 
latter contains much more information concerning 
structure of the liquid and the thermal motion of 
the molecules. The role of this function in kinetic 
theory has already been noted above in Sec. 2. 

Equation (35) can be used directly for practical 
calculations. Unfortunately, techniques available 
until recently did not provide reliable measure­
ments of spectral line shapes because the instru­
mental widths of available ''monochromatic'' light 
sources were approximately an order of magnitude 
greater than the line widths in scattered light spec­
tra. [1•2] However, the situation has now changed 
radically because of the availability of single­
isotope lamps and the rapid development of the 
laser as a laboratory tool. It thus appears that 
it will soon be practical to use (34) in the inter­
pretation of the kinetics of molecular motion in 
simple liquids. 

Van Hove [5] has shown that the function 
G(lr I. t) can be determined by measuring the 
angle-energy dependence of the slow-neutron 
scattering cross sections. However, the accuracy 
of spectral measurements in neutron spectroscopy 
is not nearly adequate for carrying out this pro­
gram at the present time. 

The method developed in the present paper can 
also be used for more complicated systems, for 
example, liquids with optically anisotropic mole­
cules, liquid, gas mixtures, etc. The authors hope 
to consider these problems. 

In conclusion we wish to thank I. L. Fabelinskii 
for valuable discussions of the problems encoun­
tered in this work. 
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