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An expression F~{ is found for the limiting value of the relativistic amplitude F~1 of an 
arbitrary Feynman diagram with all internal lines representing scalar particles ( n is the 
number of internal lines and 1 the number of independent closed loops) for the case in 
which the kinetic energy transferred at external vertices and the energy developed at each 
vertex of the diagram are small in comparison with the masses of the virtual particles. 
For n > 51/2 the amplitude F~{ is identical with the nonrelativistic amplitude considered 
in [2•3]. For n < 51/2 the amplitude F~0/ does not depend on the nonrelativistic kinemat­
ical invariants and has no singularities in the nonrelativistic region. For n = 51/2 the 
amplitude F~/ has a logarithmic dependence on the nonrelativistic invariants. The order 
of magnitude of the relativistic corrections to F~( is found. An explicit expression is ob­
tained for the relativistic corrections to one-loop diagrams. The numerical value of the 
relativistic correction is found as a function of the energy of the incident particle x in the 
case of the triangular diagrams of direct nuclear reactions of the type A + x- B + y, as 
considered in [2] The results obtained are extended to particles of arbitrary spin. 

1. INTRODUCTION 

A theory of direct nuclear reactions is now being 
developed which is based on the idea that the direct 
processes are caused by singularities in the ampli­
tude, as a function of the momentum transfer, near 
the region of physical values. [1] It is assumed that 
the contributions from the singularities to the 
direct-process amplitude can be represented by 
Feynman diagrams with vertex functions which can 
either be determined directly from experiment or 
calculated by means of nuclear models. 

When direct processes in the region of low and 
intermediate energies are considered in the frame­
work of this theory, an important question arises: 
in constructing the amplitude of a reaction can one 
confine oneself to using only nonrelativistic Feyn­
man diagrams 1>; in other words, is it possible to 
have a closed nonrelativistic description of direct 
processes in the low-energy region? It is particu­
larly important to settle this question because, as 
has been shown previously, [2•3] the analytic prop­
erties of nonrelativistic diagrams and their ex­
plicit calculation are radically simplified as com-

IlBy nonrelativistic (or relativistic) diagrams we mean 
Feynman diagrams with nonrelativistic (or relativistic) propa­
gators. 

pared with the relativistic case. To settle this 
question it is necessary to know what sort of dia­
grams make the main contribution to the amplitude 
of the direct process and under what conditions one 
can replace relativistic propagators by nonrelativ­
istic propagators in Feynman diagrams-that is, 
go over from relativistic to nonrelativistic dia­
grams. 

The Feynman diagrams for direct nuclear re­
actions 2> satisfy at low and moderate energies the 
following conditions: 

A. 1) The kinetic energies transferred at the 
external vertices of the diagram are small in 
comparison with the masses of the virtual particles 
(n = c = 1 ): I.6.E I « mi (by the energy transferred 
we mean the difference between the kinetic energies 
of the external particles coming to the vertex and 
emerging from it); 

A. 2) for a definite choice of the directions of 
the internal lines the energy Q developed at each 
vertex of the diagram is small in comparison with 
the masses of the virtual particles: I Q I « mi 
( Q is the difference between the masses of the 
particles coming to the vertex and those leaving 
it). Introducing a parameter {3 which character-

Z>we have in mind only diagrams in which all internal lines 
correspond to nuclearly stable nucleonic associations. 
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izes the smallness of ~E and Q-{3 ~ (I~E l/mi)1/2 
-we shall hereafter for brevity use the name {3-
diagrams which satisfy the conditions A.1) and 
A.2). 

To settle the question as to which of the {3-dia­
grams are important in the description of direct 
nuclear reactions we must study the asymptotic 
properties of the amplitudes of {3 -diagrams as 
functions of the small parameter {3. These prop­
erties are determined first by the structure of 
the diagram (the number n of internal lines, the 
number 1 of independent closed loops, and so on), 
and secondly by the behavior of the vertex func­
tions for small {3. Unfortunately our information 
about the vertices is at present extremely limited. 
(The simplest three-ray vertices for direct nu­
clear reactions have been studied within the frame­
work of the optical model by Shapiro [ 4J; it was 
found that when the diffuseness of the edge of the 
nucleus is taken into account the vertices have 
their own nonrelativistic singularities.) There­
fore in the present paper the amplitudes FK1 of 
the {3-diagrams have been studied only with unit 
vertices. 

The results are as follows. For {3 « 1 the am­
plitudes FK1 can be represented in the form FKz 
= F<0> + F<1> where F<0> is the main term in the n1 n1' n1 
expansion of FK1 in powers of the small parameter 
{3 and F~/ is the relativistic correction to the 
main term. The explicit form of F~[ has been 
found as an integral over Feynman parameters O!i, 
of a function which depends on the O!i, the external 
kinematic invariants, and the energies Q developed 
at the vertices of the diagram, and the order of 
magnitude in {3 of the relativistic correction F~[ 
has been indicated. Furthermore it has been 
shown that for {3-diagrams which do not contain 
unidirectional closed loops the F~0[ are identical 
with the nonrelativistic amplitudes Fn1 of the {3-
diagrams in cases with n > 51/2. 

For n :::: 51/2 the amplitude F~[ depends on the 
nonrelativistic invariants. For n < 5l/2 it depends 
only on the masses of the virtual particles and does 
not depend on the nonrelativistic invariants, so that 
all of the dependence on them is contained in the 
small relativistic correction F~?· This corre­
sponds to the fact that for n < 5l/2 we can to first 
approximation set the momenta and kinetic ener­
gies of the external particles and the energies de­
veloped at the vertices of the diagram equal to zero 
in the relativistic propagators in the Feynman inte­
gral for FKz. 

As for the analytical properties of {3-diagrams, 
for n :::: 51/2 the main terms F~/ have singulari-

ties in the nonrelativistic invariants, and the singu­
larities are determined by the nonrelativistic Lan­
dau equations considered in [2•3]. For n < 5l/2 all 
of the nonrelativistic singularities of the amplitude 
F~z appear only in the small relativistic correction 

F~1>. Therefore we can expect that the analytical 
properties of the amplitude of a nonrelativistic 
process will be determined by the singularities 
corresponding to diagrams with n :::: 51/2. 

For {3 - 0 the amplitude F~z increases with­
out bound if n :::: 51/2, and approaches a constant 
if n < 51/2. This last result is most sensitive to 
the behavior of the vertex functions for {3- 0. 
For example, for the diagrams of Fig. 3, n = 31 + 1, 
and according to Eq. (26) F~/ = {3-<l+ 2>, so that it 
would seem that more complicated diagrams would 
give larger contributions to the amplitude for scat­
tering of a nucleon by a deuteron. If, however, we 
recall the well known fact that the vertex for the 
dissociation of a deuteron into a proton and a neu­
tron is proportional to ( E/m )1/ 4 ~ {3 112, where E 

is the binding energy of the deuteron and m is the 
nucleon mass, then all of the diagrams of Fig. 3 
are of the same order in {3 ( ~ 1/ {3). It can be seen 
clearly from this example that to reach a final con­
clusion as to which {3-diagrams "survive" in the 
theory of nonrelativistic processes we must sup­
plement the results of the present paper with re­
sults on the behavior of the vertex functions for 
{3- 0. 

2. STATEMENT OF THE PROBLEM 

Let us first consider spinless particles with 
nonzero rest mass. The diagram with n internal 
lines and l independent closed loops is described 
in the relativistic and nonrelativistic theories by 
the respective integrals 

l n 

F~t = lim \II d4ks n (q7 + m7- ibr\ (1) 
s_,..+o .. s=t i=l 

l I 

F nt = 5~~ HL d3k 5des g
1 
(qJ- 2m)£;-- ibrl, (2) 

where qi, b;'io mi are the four-momentum, the ki­
netic energy, and the mass of the i-th internal line. 

Let the diagram in question satisfy conditions 
A.1) and A.2) as formulated in the introduction­
that is, let it be a {3-diagram. We note that for 
condition A.1) to be satisfied it is not required that 
all of the external particles be nonrelativistic. For 
example, it is satisfied by photonuclear reactions 
with photon energies Ey «mi. It is also clear that 
if condition A.2) is satisfied for a given relativistic 
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diagram this is so only for a definite choice of the 
directions of the internal lines; we shall regard 
these directions as fixed in what follows. 

Let us study the limiting form of the relativistic 
amplitude F~z for small {3, and in particular let us 
find under what conditions the relativistic amplitude 
F~z goes over into the nonrelativistic amplitude F nl· 
The conditions (A) alone are insufficient for the pos­
sibility of replacing (1) and (2), as is seen already 
from the difference between the conditions for con­
vergence at large momenta in the relativistic and 
nonrelativistic theories: the integral (1) converges 
for n > 2Z, and the integral (2) for n > 5Z/2. 3> 

It is convenient to make the study after intro­
ducing the Feynman parametrization [5] in the in­
tegrals (1) and (2) and using the integral represen­
tations for FKz and F nl that have been obtained in 
papers by Chisholm [SJ and the present writers. [2,3] 

After the introduction of the Feynman parameters 
ai the integrals (1) and (2) reduce to the forms 

1 n · n 

F~1 = (n -I)! lim III da1 6(~ ak-1) 
o-++o .\ . 

0 l=1 k=1 

00 l 

X ~ IT d4 ks [ Q, (k., a;) - i6) rn' 
-00 S=l 

1 n 

Fnt = (n-1)! lim ~IT dcx;6 
O-++O 0 i=1 

(3) 

n 00 I 

x ( ~ ah -I) ~ II d3 ks des[Q (ks, e5 , at)- i6rn; (4) 
k=l -00 S=1 

n l 

Q r (ks, ex;) = ~ ex; (qJ + mj) = ~ Ust (kskt- ksokto) 
i=l s,i=J. 

l 

+ ~ (asks- Usokso) + c,, (5) 
S=l 

n l 

Q (ks, fs, ex;)=~ ex; (q~- 2m,IS;) = ~ Ustkskt 
i=l s,l=1 

l l 

+ ~ asks+ C - 2 ~ bses; (6) 
S=l S=l 

n 

bs = ~ W;5 ex;m;, (7) 
i=l 

where Wis = 0 if qi does not belong to the s-th 
loop, and Wis = + 1 (- 1) if qi is in the s-th loop 
and is directed clockwise (counterclockwise). 

The integral representations for F~z and F nl 
are of the forms 

3)It is assumed that there are no divergences inside the 
diagram; in particular, each closed loop must contain not 
fewer than three lines. 

1 n n 

F~1 = (in2)1 (n- 2l- 1)! lim~ IT dex16 (2: exk- I) A -2 

o~+o 0 i=1 k=1 

X (X, I A - i6)-<n-2[), n > 2l, (8) 

1 n n 

F nl = (in'/•)1 r ( n- 5n lim ~II dex,6 (~ exk- I) 
0-++o 0 i=l k=1 

l 

X IT 6(bs) A-'I•(X/A- i6)-(n-ol/2), n > 5l/2; (9) 
S=1 

A = det (ast-), 
l 

X, 1 ......, 
A=- 4 ...:::.J a;? (asal- UsoUto) + c,, 

s,l=1 
I 

X 1 ......, 
A = - 4 ...:::.J a:;?asat + c, 

s,/=1 

(10) 

{11) 

(12) 

where ( a~l) is the matrix reciprocal of the ma­
trix ( ast ). 

Let us find the connection between Xr and X. 
We suppose that the first l of the vectors qi are 
identical with the variables of integration ks and 
introduce convenient energy variables E s: 

qs = k., kso = ms +e., s = I, 2, ... , l. (13) 

Then the ~0 in Eq. (5) take the form 
l 

q,o = m, +IS~, IS~=~ w;s~>s + Q, + £;, 

where Qi and Ef are combinations of the ener­
gies developed at the vertices and the relativistic 
kinetic energies of the external particles corre­
sponding to the i-th internal line. Substituting this 
expression for ~0 in Eq. (5), we get 

I l 

Q,=Q- ~ Ustfsft-2~ ds~>s+d, 
s,l=l S=1 

where ds and d are given by the formulas 

n 

ds = ~ ffi;5 ex; (Q; + £;), 
i=l 

n 

d =- ~ a,[(Ql +£;)2 + 2m;(Ei- £ 1)], (14) 
i=l 

if we take into account the fact that the lSi in Eq. 
(6) are obtained from the <tf by replacing the rela­
tivistic kinetic energies Ef of the external par­
ticles by the nonrelativistic energies Ei. 

From a comparison of this expression for Qr 
with that obtained when we substitute Eq. (13) in 
Eq. (5) it follows that 

l l 

C, = C + 2 ~ (bs + ds) ms - ~ Ustmsmt + d, 
S=1 s,l=l 

l 

Uso = 2 (bs+ ds-~ U5tmt)• (15) 
1=1 
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From these relations and Eq. (11) and (12) we get 
the identical relation 

l 
Xr ~ X 
A = LJ a;? (bs + ds) (bt + dt) + A + d. (16a) 

s,t=1 

We now note that for a {3-diagram the quantities 
ds and d are small and of the respective orders 
{32 and {34• 

As can be seen from the further discussion 
(Sec. 3), the quantities ds and d are of importance 
only in calculating the corrections of order {32 to 
the main terms F~t in the expansion of F~z in 
powers of {3. Therefore in calculating the main 
terms of the amplitude of a {3-diagram we can 
drop ds and d and write Eq. (16a) in the form 

I 

X riA~ ~ a;t1bsbt + X I A. (16b) 
s,t=1 

For {3-diagrams the representation (8) takes the 
form 

1 n n 

F';,1 = (in2) 1 (n- 2l- 1)! lim ~IT da/J (~ ak - 1) 
8-++0 0 1=1 k=1 

( 
l X )-(n-21) 

X A-2 ~ a;t1bsbt + A - i6 . (17) 
s,l=1 

In Eq. (17) the quantity X/A is ofthe order {3 2 relative to 

6 a~lbsbt.[2 • 3 J the function 6 a~libsbt is non-
s,t s,t 
negative for Cl!i > 0 and is zero only for bs = 0 
( s = 1, 2, ... ' l). [6] 

Changing the independent variables of integra­
tion in Eq. (17) from O!t, ... , az, O!iz+t' · · ·, Cl!in-t 

to bto ... , bz, aiZ+t' ... , Cl!in-t' we get 

main term in the expansion in powers of {3 of the 
amplitude F~z. Eq. (18), is identical. with the non­
relativistic amplitude Fnz of the diagram, Eq. (9). 
Since the integrand in Eq. (19) is analytic in X, it 
suffices to treat the case in which we have X > 0 
in the range of integration over Cl!i. 4> 

The function A( a) is positive for O!i > 0. [6] 

Therefore because of the positive definiteness of 

6 a~l bsbt for {3 « 1 the main contribution to the 
s,t 
integral (18) for n > 51/2 is that from the range of 
integration over bs near bs = 0. If b~ < 0 < bs 
( s = 1, 2, ... , l), then Jnz ..... {3-2<n- 51 12>, so that 
Jn-- oo for {3-- 0. If, on the other hand, even 
one of the bs cannot be zero (b~bs > 0 ), then 
Jnz remains bounded for {3-- 0. 

Since by hypothesis the diagram contains no 
unidirectional loops, in the integration over O!ik 
in Eq. (18) there is always a whole region of values 
of the aik in which b8 < 0 < b8. Therefore in cal­
culating the main term in the expansion of Eq. (18) 
in the parameter {3 we can take bs = 0 ( s = 1, 2, 
..• , l) in the smooth functions X, A, and a~l: 

and extend the limits of the integrations over bs 
from - oo to + oo. Then Eq. (19) takes the form 

co l 1 _ -(n-21) 

J~0) (o:;k) = ~ II dbrK-2 ( ~ a;/1bsbt +X- i6) 
-co r=1 s,i=l 

- 1/2 r (n- 51;2) --';, (x - . )-<n-s1/2) 
- :rt (n-21-1)! A A z6, (20) 

Replacing Jnz( O!ik) in Eq. (18) by the expression 
(20), we verify that the main term F~{ in the ex­
pansion of the amplitude F~z in powers of {3 is 
identical with the nonrelativistic amplitude (9). 

1 1-:x; 1+1-... -a; n-2 

X lim~da,1+1 •.. ~ da,n_/nz(a,k), 

We note that one can arrive at the same result 
(18) in a more formal way by using the formula 

8-++0 0 0 

l b; l -(1!-2/) 

Jnz (o:;k) = l1 ~ dbrA-2 ( ~ a-;?bsbt + ~- i6) 
r=1 b~ s,l=1 (19) 

In Eq. (18) the Jacobian D of the transformation 
depends only on the masses of the virtual particles. 

3. SCALAR PARTICLES. GENERAL CASE 

Let us first consider {3-diagrams which do not 
contain unidirectional closed loops [ i.e., loops with 
all of their lines directed clockwise (or counter­
clockwise)], and prove that for n > 5Z/2 such dia­
grams are nonrelativistic. This means that the 

I! 

= n1/2 r (v -l/2) [det (o: .. )]-'1, IT 6 (t) 
. r (v) '' i=1 ' , 

(21) 

which is valid if the matrix ( O!ij ) is positive defi­
nite and v > Z/2. 

4>Simultaneous vanishing of X and all of the hs in the 
range of integration is possible only at the singularities of 
the amplitude F~z regarded as a function of the external in­
variants.[ 2 ' 3] 

' 
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Now let 21 < n < 51/2. In this case for {3 - 0 
the singularity of the integrand in Eq. (19) for bs 
= 0 is an integrable one, and the main term of the 
expansion of F~1 in powers of {3 is obtained by 
neglecting X/ A in Eq. (17): 

(22) 

It can be seen from Eq. (22) that F~t is a function 
only of the masses of the virtual particles and does 
not depend on the external kinematical invariants. 
For 21 < n < 51/2 the integral (1) converges for 
relativistic values of the momenta and energies of 
the virtual particles. 

{3-diagrams with n = 51/2 require special inves­
tigation. In this case the main term of the expansion 
of F~1 can be represented in the form 

_,1 X;A- i~ 

x A 'In Y (ex. m ) ' 
" k 

(23) 

where Y is a function only of the variables O!i and 
the masses mi of the virtual particles; explicit 
calculation of Y( ai, mk) for an arbitrary diagram 
is difficult, but I Y I - m 2, where m is an average 
mass of the virtual particles in the diagram. 

It can be seen from Eq. (23) that for n = 51/2 
the main term F~{ depends on the nonrelativistic 
invariants only through the function X, which is 
given, just as for nonrelativistic diagrams with 
n > 51/2, by Eq. (12). Then the remaining terms 
in the expansion of FK1• which depend on the non­
relativistic invariants, are of the order {32 relative 
to F~{ It follows from this fact and from the 
presence of the 0 functions o(bs) in the integrand 
in Eq. (23) that for n = 51/2 the singularities of the 
main terms of the expansion of F~1 in powers of {3 
are determined by the nonrelativistic Landau equa­
tions considered previously. [2•3] It can be seen 
from Eq. (23) that for {3 - 0 the amplitude F~t 
increases as ln {3. 

Without going into the calculations, we present 
the orders of magnitude of the fractional relativ­
istic corrections to the main terms of the expan­
sions of the amplitudes FKz: 

(24) 

2n-5l = 0 
2n-5l =± 1 
2n-5l= ± 2 
2n-5l=±3, ±4, ... 

(25) 

Also it has been shown above that the F~0{ are of 
the following orders of magnitude for {3- 0: 

{ 
[3-(2n-sl) n > 5[12 

F~~- ln[3 n=51;2 . 
const n < 51/2 

(26) 

Up to now we have been considering {3-diagrams 
which do not contain unidirectional closed loops. 
Now suppose a {3-diagram contains A. unidirectional 
loops composed of v different internal lines. For 
n > 5Z/2 and n = 5Z/2 (with l 2:: 2) such {3-diagrams 
will be of the respective orders {3 11-A. and {3 11 -A. 
( ln {3) -i relative to those of {3-diagrams of the 
same structures but not containing any unidirec­
tional loops. Since v- A. 2:: 2, such a {3-diagram 

will be only a small relativistic correction to F~t· 
For 2Z < n < 51/2 the main term of the amplitude 
of a {3-diagram containing unidirectional loops is 
given as before by Eq. (22), and no additional small 
factors appear. 

Let us summarize some of the analytical prop­
erties of the amplitudes FKz of {3-diagrams as 
functions of the external kinematical invariants. 
Let F~z = F~~> + F::z>, where F:S> is the main term 
of the expansion of FKz in powers of {3 [ cf. Eqs. 
(9), (22), (23)]. For n 2:: 5Z/2 the singular points 
of F~{ lie in the nonrelativistic region. For n 
< 5l/2 the amplitude F~z' does not depend on the 
kinematical invariants, and all of the dependence 
on them is contained in F~?· but this term is a 
small relativistic correction to F~t· F~? can 
have nonrelativistic singularities as well as rela­
tivistic ones. We may suppose that diagrams with 
n < 5l/2 are unimportant in the description of rela­
tivistic processes, and in particular do not con­
tribute to the mechanism of direct nuclear reac­
tions. 

Let us consider some examples. Figure 1 shows 
two diagrams which describe the same reaction. 
Because the binding energy of the deuteron is small 

a 

FIG. 1 
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these diagrams have closely similar nonrelativistic 
singularities. The singularities of the diagram of 
Fig. 1, b, however, are contained only in the rela­
tivistic correction Fa>. Figures 2 and 3 show two 
types of diagrams describing the scattering of a 
neutron by a deuteron. The main terms F~0l in the 
expansions for the diagrams of Fig. 2, a, b and for 
all of the diagrams of Fig. 3 have nonrelativistic 
singularities. The singularities of the diagrams 
of Fig. 2, c, which are more complicated than dia­
grams a and b, are contained in the relativistic 
corrections F::i. 

f!Kn 
p fl 

d d 

17K17 
-d 

fl p p 

ti n n n 

a b 

n fl n 

n --;r;;r;:;--Tl> n 

d:f..'Sf:Y_--- :sLl d 
n n n fl 

c 

FIG. 2 

d fliT II 
.I p p 

d d 

nm---rrn 
d n li n --- li n ri 

b 
fl 

a 
FIG. 3 

4. SCALAR PARTICLES. ONE-LOOP DIAGRAMS 

Let us apply the results of Sec. 3 to one-loop 
diagrams. Since the conditions for convergence 
of relativistic and nonrelativistic one-loop dia­
grams are the same (n 2:: 3 ), one-loop nonuni­
directional /3-diagrams are always nonrelativistic. 
For a relativistic one-loop diagram the forms of 
A and Xr are as follows [ 7]: 

n n 

A = ~ ct;, Xr = ~ ct;akm;mkYik; 
i=t i,k=l 

Ytk = Ykt = (m2 + m~ + Pik)/2m,mk, Yu = 1. (27) 

For a /3-diagram the Yik can be represented in the 
form 

Ytk = W;Wk (1 + 'l']tk +11W + 0(~ 6)). (28) 

Here Tlik are the nonrelativistic invariants of 
order 132 given by Eq. (13) of [2 J, and the quanti­
ties 71It2 of order {34 are given by the formula 

Wit Qik· Eik• and Mik are defined in Sec. 4 of [2], 

and the quantity Eitj is made up of the fourth-order 
terms in the expansion in powers of (vIc) of the 
relativistic kinetic energies of the external par­
ticles in the same way that Eik is made up of the 
nonrelativistic kinetic energies. We get from 
Eqs. (27) and (28) 5> 

n 

b = ~ a1w1m1, 

i=l 
n 

n 

Xl = ~ a;akWtWkmimk'l']ik. 
i,k=t 

d<4> = ~ a;akwtwkm;mk'l']~t,>. 
i,k=l 

The amplitude FK1 takes the form 

F~1 = i:rt2 (n - 3)! lim ~ IT da;f'J ( ~ ak - 1) 
5-++o 0 i=l k=l 

(29) 

X [b2 + X1 + d(4) + 0(~6) - ib]-<n-2). (30) 

For n 2:: 4 the calculation of the main and first­
correction terms in the expansion of FK1 in powers 
of /3 leads to the result 

1 n 

F~l = F~0{ + FW = i:rt'l• r ( n- ~)'lim \ II dct; 
5-..+o~ 1=1 

n 

X b (~ ctk- 1) b (b) (Xt- ib)-<n-'f,> 
k=l 

X { 1 + [(n-4) ({ (a~1 r- d<4>) (X1 - ibtt- {a;~~]}. 

(31) 

The first term in the curly brackets in Eq. (31) 
corresponds to F~{ and is identical with the non­
relativistic amplitude Fn1 considered in Sec. 4 
of [2]. In accordance with Eq. (25) F~l[ /F~{ ~ {32• 

The expansion in powers of /3 of the amplitude 
of a triangular diagram is of the form 

F;l = Fat (X2a) [1 + ba1 + 0(~·2)], (32) 

where the fractional correction o31 is given by the 
formula 

b - 1 ( m2 I J'l· -1-- ms I j'l·) 
31- :rtV2 mr+m2 1112 ' ' m,-j-ms 1113 ·' 

X [(m1 + m3) In "!:2- (m1 + m2) In.'!!.!_] 
m2 · m" 

(33) 

5>we take this opportunity to note that in the expression 
for X in Eq. (16) of [2 1 a term was omitted which, being pro­
portional to b, does not contribute to the amplitude (17), nor 
to Eq. (19) in [2 ]. 
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( 1 + V -z 
cp(z)=i 2V-zfln 1-V-z' -1<z<O 

l Vz/tan-• "Vz, z>O; 
z = ('1123- 'f]g3)/('f]g3- 'll;;a). (34) 

Equations (33), (34) correspond to the triangular 
diagram of Fig. 2, a in [2] and are written in the 
notations of Sec. 5 of that paper [Eqs. (26)-(28)]. 
It can be seen from Eq. (33) that 631 "' {3, which is 
in accordance with Eq. (25). 

For triangular diagrams of direct nuclear re­
actions of the type A + x - B + y, which have been 
considered in [2], we have found the numerical 
value of the relativistic correction 631 and its de­
pendence on the energy of the incident particle x. 
Diagrams were taken whose singularities in txy 
[see Eq. (32) in [2]] lie closest to the physical 
region [which is located in txy < 0 ]. The calcu­
lation was made by the formula (33), in which z 

= (t~y-txy)/(txy-t~y). where txy is the posi­
tion of the singularity in the txy plane and t~y 
corresponds to the point 17~3 defined in [2]: 

t~y =- 2 (m2m3'f]g3+ (Mx-My)Q), 

Q = Mx + m3 -My - m2• 

The point t~y lies to the right of or on the 
boundary of the physical region in the txy plane; 
since, however, o31 ( z) changes slowly with in­
creasing z, the value of o31 ( 0) at z = 0 charac­
terizes the magnitude of the correction near the 
right-hand edge of the physical region in the txy 
plane. 

The results of the calculations are given in the 
table, which gives the position of the singularity 
in the txy plane, the function 631 ( 0 ), the values 
of txy at which the correction o31 reaches 10 and 
15 percent, and the values of the energy of par­
ticle x in the laboratory system for which the 
middle of the physical region is at the values of 
txy given in the fourth and fifth columns (these 
energies are entered in columns 6 and 7 ) . The 
diagrams which describe the reaction are shown 
in Fig. 4. 

We see from the table that for the diagrams in 
question the accuracy of the nonrelativistic approx-

Oil <f 
lxy, MeV-amu IEvMeV 

c:: ::l ~ 

~ 1§: 
~~ s·" c:: s 0 ~ ~~.s "' 0 

~~~ ·> II II , II II 

'-~~ 
,;; 

t§_ ~ [:i •-..4 Q,) 41 I <.0 o, ... 
I 

I 163 5.8 -590 -1850 120 380 
II 258 4.4 -2060 -5710 420 1180 
lii 97.8 3.9 -790 -2150 80 2:30 
IV 277 6.9 -500 -1850 50 200 

FIG. 4 

imation is 10 percent or better over a wide range 
of energies of the incident particles. 

5. INCLUSION OF SPIN 

We shall now extend the results of Sees. 2-4 
to the case of particles with spin. Out of the n 
internal lines of a {3-diagram let vs lines corre­
spond to particles of spin S which have the propa­
gation function 

ds (q;) 
Gs (q;) = 2 + 2 •6 , (35) 

qi m,- 1 

where ds( ~) is a polynomial in qi of degree 28. 
For 

the relativistic amplitude of the diagram converges 
and is of the form 

l n 

F~ll(vs) = lim~ II d4kiP (q) n (q~ + m~- i6fl, (36) 
B~+o • 1=1 i=l 

P(q) = II dt;, (q;,;) II dl(Qt,). . . (37) 
( it;,) (i,) 

We shall now show that in convergent {3-dia­
grams which contain no unidirectional loops, for 
n > 51/2 the relativistic propagators (35) for par­
ticles with spin can be replaced by nonrelativistic 
propagators ( qf- 2m illS i- io) - 1 which do not de­
pend on the spin. Using the Feynman parametri­
zation, we put Eq. (36) in the form 

1 n n 

F~t(vs) = (n- l)! lim~ II dat6 (~ Uk- l) 
o->+o 0 i=l k=I 

00 l 

X ~ ll d4ktP(q) ( Qr- itJtn, 
_ 00 1=1 

(38) 

where Qr is given by Eq. (5); qi is of the form 
l 

q; = ~ wuk1 +Pt. 
1=1 
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where Pi is a linear combination of the four­
momenta of the external particles. 

By a shift of origin in k-space we eliminate 
from Qr the terms linear in kt 

I 

kt->-k; = kt + + ~ a~;,1au, 
U=l 

I I 

q, = ~ wuk; + p; ; P, - p·- _!_ ~ W·ta-1 a i- l 2 ~ J tu u, 
1=1 f,U=1 

(39) 

(40) 

(41) 

and turn the path of integration over k~0 , so as to 
go over in the usual way [S] to a Euclidean space of 
variables k8. Then, using Eq. (16c) (sic), we get 

1 
1-"; 1+1-. · · -ai n- 2 

F~l(•sl = i1(n- 1) !lim ~ drx;1+1 .•• 
0-++0 0 

b" 
l a oo l l 

X IT ~ dba ~ IT d4k:P (~ W;,k;-\- p;) 
a=l b~ -oo "t'=l r=l 

~ doc;n_1 D 
0 

I 

x { ~ (atuk;k: + a~;,1btbu) + ~ - ibrn. 
f,U=1 

The quadratic form 
l 

~ (atuR;k: + a;;}btbu) 
t,u=1 

(42) 

in the 5l-dimensional space of the variables ( kf', 
kf'o• bt) is now positive definite, and therefore for 
n > 5l/2 and {3 - 0 the integral (42) involves a 
pole at k(T = ba = 0, which makes the main contri­
bution to the integral when 

n > 2! + ~ Svs. 
s 

Using Eq. (21) in the 5l-dimensional space of the 
variables ( ~. k~0 , ba), we find the main term in 
the expansion of the expression (42) in powers of 
{3; 

1 n 

F~](vsl = (in'lo)Zf ( n - ¥) lim ~IT dCJ.t 
o->+ooo i=1 

'n I 

X b (~ Cl.k- 1) IT b (bl) p (p) A-'!.(~- ib r(n-5112 ). 

k=1 1=1 (43) 

It follows from Eqs. (40) and (15) that 

l I 

P;0 = Pto;- ~ Wt1G(;,1 (bu + du) + ~ wum1 
I,U=1 f=l 

l l 

= Pto + ~ Wuml- ~ Wuat;}du, 
1=1 I,U=1 

because of the presence of the c5 function c5 ( bu ) 
in Eq. (43). On the other hand, if we set all the 
Et = 0, then for the {3-diagram ~0 = mi + 0({32 ), 

and therefore 
l 

Pto = m, - ~ Wumt + 0(~2). 
1=1 

It follows that in Eq. (43) p{0 = mi + 0({32 ). The 
spatial components of the vector Pi are of the 
order of {3m. Therefore P(pi) = P(mi) + 0({3), 
and the main term of the expansion of the relativ­
istic amplitude in powers of {3 is of the form 

(44) 

where F nl is the nonrelativistic amplitude (2) for 
the given diagram and P( mi) is a constant which 
depends only on the masses of the virtual particles. 

We express our sincere gratitude to K. A. Ter­
Martirosyan and I. S. Shapiro for a helpful discus­
sion of the results of this work. 
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