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The Fermi-Yang equation with a rectangular well of range r 0 is solved for arbitrary angu
lar momenta and parities. Equations are found for the mass eigenvalues of the first excited 
states with angular momentum 0, 1, 2 for r 0M = 0.5, 1, 2, 3; also the charges of the inter
action of nucleons with these bosons are obtained. For the values of r 0 considered the den
sity of levels turns out to be high and the charges of many excitation branches are small al
though they do increase exponentially with r 0• The high level density and the smallness of 
masses and charges of a number of branches are, apparently, characteristic of the Fermi
Yang equation and are not confirmed by the Bethe-Salpeter equation with an instantaneous 
interaction in the form of a rectangular well. [l] 

1. INTRODUCTION 

CoMPOSITE models of elementary particles are 
widely discussed in the literature. [2-s] The inter
est in them has increased in connection with the 
discovery of a number of boson resonances; cer
tain models have appeared classifying these reso
nances in terms of excited states of a baryon
antibaryon system. [S-G] However attempts at 
quantitative calculations with such models run 
into mathematical difficulties and difficulties in 
principle connected with the relativistic bound 
state problem for strong interactions. Nonetheless 
one might suppose that some of the most gross 
characteristics of the excitation spectrum, such 
as the relative ordering of levels with different 
quantum numbers, the density of levels, the order 
of magnitude of the charge relative to the produc
tion of such bosons, etc., could be comparatively 
stable characteristics of an interaction of given 
strength and range and not too dependent on the 
interaction details. Thus, in nonrelativistic quan
tum mechanics a rectangular well potential de
scribes not too badly the qualitative features of 
quite realistic problems of nuclear physics. There
fore one might suppose that also in the Fermi
Yang model, i.e., in the relativistic problem with 
a rectangular well, the indicated gross features 
of the spectrum will not be radically distorted. 
Then in the absence of anything better this simple 
model may serve for orientation purposes to judge 
about the order of magnitude and extent of the 
''fundamental'' interaction, as well as about the 
existence and density of resonances of given an
gular momentum and parity that are to be expected. 

In the present work the Fermi-Yang equation is 
solved for arbitrary angular momenta and parities. 
In Sec. 2 we find the wave functions and the eigen
value equations; in Sec. 3 we calculate the corre
sponding charges; the results for the angular mo
mentum values 0, 1, 2 are given in the form of a 
table. The qualitative features of the results and 
the important question of the relation of the model 
to a more rigorous formulation of the problem 
are discussed in Sec. 4. 

2. SOLUTION OF THE EQUATIONS 

We begin with the Fermi-Yang equation[2] 

[(acp- 1Za) p + Mp~p + Ma~a :- V (I- 1Zp1Za)l 'I'= E'I'. 

(1) 

Here Cllp,a• f3p,a are Dirac matrices acting respec
tively on the spin indices of the particle p -the 
proton, and the particle a -the antineutron; V( r) 
is the interaction potential. Writing the 16-compo
nent wave function '11 in the form of a matrix of 
4-component entities 1/Ji, 

transforming like the product of two-component 
spinors p and a, we obtain for 1/Ji the equations 

SpP'iJa- SaP'i'2 + (Mp + Ma) '1'1 = (E + V) '1'1- VspSa\jl 4 , 

Spp\jl4- SaP'i'1 + (Mp- Ma) '1'2 = (E + V) 'ljJ2 - VspSa'i'a• 

Spp\jl1- Sap'ljJ,- (Mp- Ma) 'i'a = (E + V) 'ljJ3 - VspSa'ljJ 2 , 

SpP'i'2- SaP'i'a- (Mp + Ma) '1'4 = (E + V) 'ljJ4 - VspSa'ljJ1 , (2) 

where Sp, sa are Pauli spin matrices acting on 
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the spin indices of the particles p and a. Going 
over for convenience from the functions 1/Ji to 
their sums and differences we obtain 

sp~ = [£ + V (1 + Spsa)l 'X- 2M<p, 

spx = [E + V (1 + spsa)l ~ + AT], 

SpTJ = [E + V (1 - spsa)l <p- 2Mx, 

Sp<p = [£ + V (1 - SpSa)l T] + M; 

<p = 'PI + 1Jl4, X = 'PI -1Jl4, 

T] = 'Pz + 1Jla, ~ = 'Pa -1Jlz, S = Sp + Sa, 

a = Sp - Sa, 2M = Mp + Ma. A = Mp- Ma. (3) 

We are looking for solutions with definite total 
angular momentum j, its projection m and parity 
P. Taking into account the different intrinsic pari
ties of particle and antiparticle we obtain for the 
angle and spin dependence of the wave functions 

'X = 'XoQjmjo +'XI Qjmjl' <p = <JloQ/mjo + <JliQ/m/1> 

TJ = TJ+Qimi+n + TJ_Qfmi-11• ~ = ~+Qimf+ll + ~-Qimi-n;. 
p = (-)/: 

<p = <p+Qimf+ll + cp_Qfmi-11• 

TJ =- TJoQimiO + 1J1Qimii• 

'X = x+Qimt+n + 'X-Qimi-11· 

~ = ~oQjm/o + ~lQimil· (4) 

Here the functions 'Pi• Xi. 7Ji• ti depend only on r, 
and the spherical spinor Qjmls is composed in the 
usual manner of the spherical function Y lm 1 ( n) 
and the spin function us~ of two particles of total 
spin s and projection ~ by means of the Clebsch
Gordan coefficients cJ1'm : 

m1s~ 

Qjm/s (n) = c{;;:,sp. Ytm (n) Us[L• (5) 

For what follows it is convenient to introduce along 
with the Qjmj±H the orthonormal combinations 

Qa = j'l• (2j + !)-'/, Qjm/+11 + (j + l)'l, (2j + 1)-'I•Qjmj-11> 

Qb = (j + !)';, (2j + 1)-'/, Qimi+n- j'i• (2j + 1)-'/•Qjmj-11· 

(6) 

At that the function f in Eqs. (4), containing 
Qjmj±H• are rewritten in the form f = faQa 
+ :fJJQb, where fa, fb are related in an obvious 
manner to f+, L. Then, making use of the for
mulas for the differentiation of the spherical 
functions (see, for example, [T]) and the algebra 
for the composition of angular momenta one can 
obtain the relations 

fQa = - (f' +fir) Qim/1• 

ips fQb = - {/' (j + I )'iz Qimfi fl r, 

T fQtmti =- (f' +fir) Qa + {'(j + 1)''• Qvf/r, 

fQtmio = 0; 

(7) 

Substituting the solution (4) into the Eqs. (3) and 
making use of the relations (7), we obtain the fol
lowing equations for the radial functions: 

p = (-)i+l: 

~i (~~+~air+ j'i•(j + 1)'/,~bjr) 
= (E + 2V)x~- 2M <pi, Ecr1 = 2M X1, 

2i (X~+ x)r) = (E + 2V) ~a+ AfJa. 

- 2i/"' (j + J)'1•x/r = (E + 2V) sb + ATJb' 

2i (YJ~ + 2TJ/r + j'l•(j + 1)'1'YJafr) 

= (E + 4V) <p 0 - 2Mx0 , (£- 2V) xo~= 2M<po. 

2i<p~ = E'Y]b + A~b. 
- 2i/' (j + 1)'1'<pofr = E'Y]a + A~a; 

p = (-)i: 

2i (~~ + ~/r) = (E + 2V) Xa- 2M<p~. 

- 2ij'i•(j + 1)'•~ 1 /r = (E + 2V) Xu- 2Mcpb, 

2i <x: + x/r + /1' (j + J(•xb/r) 

= (£ + 2V) ~I + A'Y]I, £T]J ~ - L\~1> 

2i (cp~ + 2cpvfr + r· (j + J)"• cpa) 

= (E + 4V) YJo + Mo. (£- 2V) ~o = - A'fJ 0 , 

2iYJ;1 = Ecpb- 2Mxb' 

(Sa) 

- 2ij'/'(j + 1)'1''Y]ofr = Eq;a- 2MXa· (Sb) 

In the following we consider only the case Mp 
= Ma, .6. = 0. Then, as a consequence of the re
sultant "charge" symmetry under the exchange 
of the particles p - a, the spin s (of the "large" 
components cp and x) becomes a quantum number, 
and in Eq. (Sa) the equations for cp 0, x0, 71 separate 
from the equations for cp 1, x1, l;. In Eqs. (Sb) 71 1 

and to vanish when .6. = 0. If we further go from 
an arbitrary potential V ( r) to the case of a rec
tangular well potential 

V (r) = fV 0 , r<ro , 
\o, r>ro 

then, as is easy to verify, in the system of equa
tions (8b) the equations containing 1Jo also sepa
rate from the equations for t 1• 

(9) 
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The resultant system of equations should be 
augmented by the condition of continuity at the 
point r 0• It is obtained directly by integrating 
equations (8) over a small neighborhood of r = r 0: 

the functions, whose derivatives enter into these 
equations, should be continuous. As a result we 
arrive at the following equations and matching 
conditions: 

p = (-)1+t, s = 0: 

" 2 ' j (j + f) ( E MZ ) IP0 + r<Fo- -,-. -<p0 + E V + 4 + 2v _ E <p0 = 0, (lOa) 

cp 0 and 1Jb = 2icp0/E should be continuous; 

p = (-}'+I, s = 1: 

x~ + ~ x~- i u ;t 1) X1 + (v + ~) (v + ~ - 2:·) x1= o, 
(lOb) 

X1 and ta = 2i( X1 + X1 /r) ( E + 2V) - 1 should be con-
tinuous; 

p = (-)1, S= 1: 

• 2 , j (j + 1) ( E ) ( 4M2 ) '11o+('l1o--,-.-'l']o+ V+4 E-2V+E 'I'Jo=O, 

~· + ~ ~· - 1 u + n 1- + (v + ~) (v + ~ - 2M•) 1- = o 1 r 1 r• ~ 1 · 2 2 E ~ 1 ' 
(lOc) 

and the following 

,_ _ . (2V +E) 1']~- 2Mj'f• (j + 1)'/, ~1/r 
"lo• '<>1> <pb- 2' E• + 2EV- 4M2 ' 

_ 2 . E (~~ + ~1/r)- 2M/'· (j + 1)'/, TJo 
Xa - ' E2 + 2EV - 4M2 

should be continuous. 
In spite of the fact that Eqs. (lOc) for 1Jo and ?; 1 

are uncoupled, the complete solution turns out to 
be in this case a certain definite superposition of 
the particular solutions because of the "mixing" 
resulting from the matching condition. 

As is well known, the solutions of Eqs. (10) are 
the spherical Bessel functions 

(lla) 

(llb) 

where K2 = M2 - E2/4, and the quantities ki are 
equal to the coefficients of fi in the last terms on 
the left hand sides of Eqs. (10). Substituting these 
solutions into the matching conditions we arrive 
at the following equations for the eigenvalues of 
E, i.e., for the masses of the composite bosons !J.: 

p = (-)i+1 , s = 0: 

p = (-)i+1, s = 1: 

(E + 2V0}-1 [ER.t (k2 r0) + 2jVol = - Qi (xro)· 

Here 

(12b) 

R.1 (z) = zlf-'1. (z)!Jw,, (z), 

ki = E (E/4 + Vo+ M2/(2V0 -£)), 

k~ = (E/2 + V0 ) (E/2 + V0 - 2M2/E). (13) 

For parity P = (- )j we obtain from Eq. (lOc) 
the system of equations 

(x2 - V0£/2)-1 [x2 ( 1 + 2~0) R.1 (k3r0) 

- voM ( 2it 1 M +vir) J =- Qt{xro), 

(x2 - V0£/2)-1 [x2R.t (k2r 0) 

- V 0 (jE/2 + ;, Y j (j + 1) M)l = - Qj(xr0), 

where 

k~ = (E + 4V0) [£/4- M 2/(2V0 + £)], 

;I = 'I'Jo (ro)/~1 (ro). 

After elimination of the parameter ~ j we obtain 
for the eigenvalues of E the equation 

P = (-)/, So= J: 

WoE [x2 (£ + 2V0) R.t (kar0) + E (x2 - V;E) Qf (xr0)] 

=' 2 [ x2R,i (k2r0 ) + ( X 2 - V~E) Qi (xr0)J 
X [ x2 (£ + 2V0) R.1 (kar0) 

(14) 

+ E(x2 - V~E) Q1 (xr0)- 2V0 (j + 1)]. (15a) 

For j = 0 (scalar) the function ?;1 = 0 and the 
eigenvalues are determined by the first of the 
Eqs. (14): 

( V E )-1 P=+1, j=O,s=1: x2 -+ 
X [ x2 ( 1 + 2: 0 ) R.0 (k3r0)- 2~0] =- xr0 • (15b) 

For small V0/M « 1 the quantity E/2M- 1 
and the Eqs. (12), (15) go over into the usual non
relativistic equations for a rectangular well, with 
Eq. (15a) becoming the product of the equations 
for l = j - 1 and l = j + 1 corresponding to the dis
appearance of spin-orbit coupling in this limit. 

Equations (12), (15) were solved numerically 
for several values of r 0 with the well depth V0 

fixed by the requirement that the mass of the low
est pseudoscalar state be equal to the mass of the 
pion: IJ..rr/2M = 0.0743. 1> 

1lThe values of J1.7T/2M and, correspondingly, of V0 for 
r0M = 1 differ by a few percent from those used by Fermi and 
Yang[ 2 ] corresponding to the more precise experimental value 

of J1.1r· 
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r 0M 0,5 

I 
~'.'M 90.7 

2s+!L Prin- p.,I2M g1/4rt r p./2M 
I cipal 

quan-
tum 

number 
I I 

•s. { 1 0.074<! 0,1\! I o.c,743 
pseudo scalar 2 0.507 0.20 o.t.30 

•p, 
pseudovector 1 0.224 0,015 0.194 

•D. 
pseudotensor I 0.447 0.0031 0.372 

•p, { 1 0,011133 2.2·10-ll 0.0371 
pseudovector 2 0.011135 7.3·10-12 0.0392 

•D. 
pseudo tensor I 0.0112 7.1·10-1? 0.0378 

•Po 
scalar 1 0,440 u.1o-• - 0.388 

'(S +D), { 1 0.0112 1.3·10-7 0.022 0.0378 
vector 2 0.0115 3.6-1o-• 0.023 0,0405 

'(P +F). 
0.0113 7.9·10-11 0.023 0.0386 tensor 1 

Results for low states with angular momentum 
j = 0,1, 2 are shown in the table; they are rather 
unexpected. 

1) The masses of the vector, tensor, pseudo
vector, and pseudotensor with spin s = 1 turn out 
to be smaller than the mass of the "pion" if one 
uses the value r 0M = 1 as assumed by Fermi and 
Yang; these masses rapidly approach zero if r 0 

is further decreased. If it is desired that the 
"pion" be the lightest one must increase r 0 to 
r 0M ~ 2 and decrease correspondingly the well 
depth V0• 

2) For all values of r 0 considered the levels 
for the pseudovector and pseudotensor with s = 1, 
as well as for the vector and tensor, are rather 
dense although the distance between levels in
creases with increasing r 0• As examples we 
show in the table two levels differing only in the 
principal quantum number for the pseudovector 
with s = 1 and for the vector. 

3) For all r 0 the lowest pseudovector is lighter 
than the vector. 

Let us note that all these peculiarities are con
nected with the steep dependence in (12b), (15a) of 
the function k2( E), given by Eq. (13), on E. The 
expression under the square-root sign contains 
- 2V0M2/E and turns out to be a very steep func
tion of energy in the region under consideration 
of large V0/M and small E/2M. We shall return 
to this point in Sec. 4. 

1 2 

I 

3 

27.6 8.71 4.35 

g1;4rc r p.,I2M g1/4rc r p.,I2M g'/4rt r 

0.71 I o.o743 5.7 0.0743 39 
0,80 0.358 7.5 ~.325 57 

0.10 0.170 1,2 0,160 9.6 

0.044 0.305 0.87 0.276 8,7 

1,7·10-• 0.121 1.7·10-• 0.243 0.058 
6.6·1o-• 0.139 1.0·10-· 0.303 0,44 

2.2·10-11 0.127 1.0·10-1 0.261 0.030 

0.024 - 0.384 0-.17 - 0;443 1.7 -
4.1·10-• 0.076 0.126 0.019 0.27 0.252 0;47 0.73 
1.2·10-· 0.081 0.148 0,052 0.33 0.284 1.1 0.38 

9.5·10-· 0.077 0.133 1.5· to-• 0,28 0.276 0.42 0.72 

3. CALCULATION OF THE CHARGE OF INTER
ACTION WITH THE COMPOSITE BOSONS 

By the charge for the interaction with the com
posite boson we shall mean the residue at the pole 
of the amplitude for scattering of a "proton" by 
an "antineutron," obtained by analytic continuation 
of the appropriate partial wave amplitude into the 
region E < 2M. The normalization coefficients 
will be determined by equating this pole term to 
the Born term, obtained by introducing phenome
nologically the corresponding boson-baryon cou
pling into the interaction Lagrangian. 

The spinor scattering amplitude G(n) is de
fined, as usual, as the coefficient of the outgoing 
wave in the asymptotic expression for the "large" 
component of the wave function: 

= 6,1'-, '•~'-• exp (ik0r) + G,l'-· s,1,, (n) exp (ikr)jr. (16) 

Here s 0 and J.l.o are the values of the total spin and 
its projection for the incident wave, s and Jl. are 
the corresponding quantities for the scattered 
wave. For the equal mass Mp = Ma case being 
considered the total spin is a constant of the mo
tion so that s = s 0• 

For the amplitude GsJJ.,SoJ.l.o we make use of the 
formulas of the scattering phase shift theory for 
spin % particles: [S,s] 
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jm 

G1~'· 11'-o (n) = G~!'-.11'-o (n) + at~'. 1~'-• (n); (17 a) 

G~!'-.1!'-o (n) = 4n 2J ai/1 [ Qim/1 (n) Q;m/1 (no) 11'-1'-o' (17b) 
jm 

jm 

X Q;mi-n (n0)J+ sin BJ cos BJ (~i - a/) Q;mi+n (n0) 1 

+ Qimi+n (n) [sin Bt cos BJ (~J- ai) QjmJ-n (no) 

(17c) 

For notational convenience the amplitude G1J.L,lJ.Lo 
in Eq. (17) is broken up into a sum of terms 
Ga and Gb, combining respectively harmonics of 
parity P = (- )j+t and P = (- )j. At that ajjo• ajjt 
are the conventional partial amplitudes for the 
given spin and parity, and aj and f3j are the same 
amplitudes for the two orthogonal solutions of 
"type a" and "type {3" of Blatt and Biedenharn, [B] 

corresponding to parity P = (- )j with "mixing pa
rameter" Ej= 

ex p (2Ui 10) - 1 
aiio = 2ik 

exp (2i611) -1 
(J,ii1 = 2ik 

exp (2i6j)- 1 
Cit= 2ik 

exp (2i6f) - 1 
~~ = 2ik • (18) 

The phase shifts oj are found by solving Eq. 
(10) for E >2M subject to the boundary condition 
of a standing wave at infinity. 

In the following we are interested in the ampli
tudes a, {3 only at the pole points E = J.Li, corre
sponding to bound states. The corresponding resi
dues turn out to be simply related to the left parts 
Wj of the Eqs. (12) and (14) determining the eigen
values: 

exp (2i61) -1 1 n 
2ik E-=:1'- (-) 2x 

preceding the state of the antiparticle was de
scribed throughout in terms of an ordinary wave 
function one must before comparing with Eq. (17) 
go over from iPn to the charge-conjugate field 1/Ja: 

C = ( 0 Oy) . (21) 
Oy 0 

Then the Born term, describing the scattering of 
the particles p and a from the states 1 and 2 re
spectively into the states 1' and 2', is of the fol
lowing form in the barycentric system 

g2 - - E dil (P1 + P•) 
- 4n ('!JpOPI\'a)l'2' ('l'aCOz'!Jp)21 2 [12 + (p, + p2)2 • (22) 

Here E is the total energy; p1 + p2 is the total 
momentum four-vector with components ( 0, E); 
dil(p)/(p2 + J.L2 ) is the Green's function of the 
boson under consideration. The quantities dil are 
of the following form depending on the boson spin 
(see, for example, [to]) 

j = o: d = 1; j = 1: dil (p) =oil+ PP/f.l-2 _ha (p); 

j = 2: dik, lm = + [huhkm + him hkl-+ h;khzml. (23) 

At the pole point of interest E = J.L, so that the 
quantity hi[ is equal to oil for spatial i,l, and is 
equal to zero for the remaining cases. The Dirac 
spinors have the usual form 

'iJ (p) = (e + M)'1• (2e)-'1• (u, ap (e + M)-1u), 

where E = E/2 and u is the unit spinor. 
From Eqs. (17)-(23), using standard proce

dures for composition of angular momenta and 
using the formulas relating the spin matrices to 
the Clebsch-Gordan coefficients 

(ou)"0 =- i V2Cr1~"· •;,r, (a11o~'-)"0 = i V2 (-t C~1-;~';.;, 0. 

(o~'-o11)"0 = - i V2dt,"· •;, 0· 

(where aJ.L are the spherical components of the 
vector a), we obtain the following expressions 
for the charges g2/47T (the prime on the brackets 

X [ (E - f.t) Kl+'/, (x.ro) d~ (wj + Q/ ('Uo)) IE~!'-r. (19) denotes differentiation with respect to E): 

The derivation of Eq. (19) is given in the Appen
dix. Thus, for known Wj the problem reduces to 
the calculation of the Born terms and their trans
formation into the appropriate term of Eq. (17). 

The phenomenological Lagrangian for the inter
action of the fermion fields p and n with the boson 
field 4li (where the field 4li may be scalar, vector, 
etc. ) will be written in the form 

(20) 

the operator Oi contains y matrices and differ en
tial operators acting on 1/Jp and ~. Since in the 

1) s = 0, i = 0: Lint= gPS (i\ilnro'IJP<D +H.c.), 

g~s _ 2 exp (2xro) 
41t - [k, ctg k,ro + x]' ' 

6[12 r~ exp (2xro) 
(24a)* 

(xro + 1)2 [R1 (k,ro) + Q, (xro)]' 

*ctg =cot. 
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g~t 15}.14 rt exp (2xr0) 

t,:n: (x2 rg + 3xro + 3)2 [ R2 (k1ro) + Q2 (xro) ]' 

2) S = 1, P = (-)1+1; 

g~v 3}.12 r~ exp (2xr0) • 

4Jt 4(1 +xr0 ) 2 [(£Rl(k2r0) +2Vo)/(2Vo+ E)+Ql(xro)J'' 

. gpy [ (-- o1jlp a\jin - o1jlp 
1 = 2: Ltnt = 4fL '¢nYtYs axm - oxm YtY5'¢p + '¢nYmY5 ax;-

5 }.14 r~ ex p (2xro) 

- 2 (x2 rg + 3xr0 + 3)2 [(ER2 (k2ro) + 4Vo)/(2V0 + £) + Q2 (xro)]' 

(24b) 

For parity P = (- )j the charge can be calcu
lated relatively simply for the scalar j = 0 case. 
At that the amplitude has the single term form 

Cw. Wo = exp (~~~o) - 1 4:n: (Qoo 11 (n) Q~ou (no))l,~o' 

so that analogously to the preceding we obtain 

P = + 1, j ~ 0: Ltnt = g5 ('1Jn'¢p<D + H.c.), 

g~ J.12 r0 exp (2xro) 
4:n: = 2x2 [wo (E) -t- xro]'' 

(25a) 

where w0( E) stands for the left side of Eq. (15b). 
In the general case j = 0 we make use of Eq. (17c). 
At the pole point one of the partial amplitudes, for 
example C¥j, becomes infinite so that all the re
maining terms may be ignored and the amplitude 
becomes 

G~l'-. w, = a, 4:n: L [ ( Q m -n (n) cos E/ - Qimi+u (n) sin Ej) 

m 

Into the Eq. (19) for the pole term C¥j enters 
the function Wj, equal to the left hand side of 
Eq. (14) and containing the parameter ~j· It can 
be shown that ~ j ( E ) can be obtained by setting 
the left sides of Eqs. (14) equal to each other: 

( ~~- ~~) j'/, (j + 1)'/, MV0 = X2 [ R1 (k2 ro) 

( 1 + 211o) R (k )l 1 V (2 (j + 1) M2 
• E) - E i sro. 1 o ----E-- 12 , (27) 

and that the ~ j obtained in this way is related to 
the mixing parameter Ej by 

~I= - tg (e1 + YJ), tg y1 :=: j'i, (j + l)-'1•. (28)* 

In this manner the expression (26) is determined 
with the help of Eqs. (19), (14), (27), (28). In writing 
the Born term (22) it should be borne in mind that 
there always correspond here to a given angular 
momentum and parity two combinations of Dirac 
spinors [for ex~ple for j = 1: i~nYl¢p and 
i¢n 8¢p I axz - i ( 8¢n I Bxz) ¢p], so that the ratio rj 
of the coefficients of this superposition at the pole 
is determined by the dynamics, in particular by 
the values of the parameters E j or ~ j. 

Taking these considerations into account we find 
by the previous method 

P= (-)i, j= 1: 

g~ 2x2 rg exp (2xr0) (3/2)':, (~i + 1)-',, 

4:n: (xr0 + 1)2 [w1 (£) + Q1 (xro)]' 

r = J.LM (1 + T'i•t J:..). v x2 \ol M ' 

. • gr f[- o1jJP a1pn - a1pP 
1 = 2. Lint= 4}.1 \ 'i'n Yi axl - ax/ Yt 'l'p + 'l'n Yt OX; . 

g} 6J.L2x 2rt exp (2xr0) ("Ia)'/, (£~ + 1)-',', 

4:n: (x2 r~ + 3xr0 + 3)2 [w2 (E)+ Q2 (xroll' 

- J.LM ( 1 I ~ 3'1• 2-'/, Jj,_ \ r T - x' 1 \;2 M ) · (25b) 

The expressions for dwj /dE in the denomina
tors in Eqs. (24), (25) may be further simplified 
by making use of Eqs. (12)-(15), (27), etc. 

Numerical values of the quantity g2/47r are 
given in the table along with the corresponding 
values of the masses. The following peculiarities 
are noticeable. 

1. The charges increase steeply with increas
ing r 0• For s = 0 and for the scalar this increase 
is essentially determined by the exponential 
exp ( 2Kr0 ); for s = 1 and j "'- 0, in addition, as 
r 0 increases J.L increases and the quantity dkUdE 
~ V0M/J.L2 decreases. Large values of this quan
tity at small r 0 lead to extremely small values of 
the charge. 

*tg =tan 



1336 V. G. VAKS 

2. The charges of spin s = 0 bosons for all r 0 

are many times larger than for s = 1 and increase 
with the principal quantum number. 

3. For a given s the charge decreases with in
creasing angular momentum j, so that the charge 
of the pseudoscalar turns out to be largest. The 
latter is of the order g~8 /47T ~ 0.1-1 for r 0M 
~ 0.5-1, and reaches values g~g/47T ~ 10 for 
r 0M ~ 2-3. 

4. DISCUSSION OF RESULTS 

In the framework of field theory the bound state 
problem is formulated in terms of the integral 
Bethe-Salpeter equation with a kernel represent
ing the sum of all irreducible diagrams. For 
strong interactions such an equation is at this 
time symbolic. For the model purposes discussed 
in the Introduction one might attempt to approxi
mate the properties of the kernel of this equation 
in some simple way, for example by replacing the 
sum of all diagrams by one "intermediate boson" 
line, and try to solve the resultant equation without 
assuming the coupling constant to be small. Even 
this problem poses great mathematical difficulties, 
[ 11• 13 ] connected in part with the singular nature 
of the equation, i.e., with the usual divergences of 
field theory (Goldstein, [11] Polubarinov-see [14J). 
The problem may be further schematized by re
placing the kernel by an instantaneous potential in
teraction of one or another form. [1] And, finally, 
as the last step one could go over from this ex
tremely simplified but nevertheless still integral 
equation, which takes into account the vacuum of 
the spinor particles, to the differential equation 
of Breit with a potential V(r ), for example the 
Fermi-Yang equation with a rectangular well. 

The present work was undertaken in the hope 
that there exist certain features of the excitation 
spectrum that are determined, roughly speaking, 
by the relativistic kinematics, and that these fea
tures would "survive" all the indicated simplifi
cations. The results, given by Eqs. (12)-(15), 
(24)-(25), apparently fail to confirm this hope. 
The study of the next step, i.e., of the Bethe
Salpeter equation with an instantaneous interac
tion in the form of a rectangular well, [1] does 
not confirm the main results of the Fermi-Yang 
equation, in particular the singularities of the 
type V0/E in Eqs. (12)-(15) for s = 1 and the 
connected with it properties of the excitation 
spectrum-density of levels, small masses of 
these branches, etc. Only for large r 0M > 1 cer
tain general results are preserved, as for exam
ple the exponential growth of the charge with in
creasing interaction range, the existence for 

s = 0 of an axial vector whose mass is not too far 
from the mass of the pseudoscalar, etc. 

The author is most grateful to A. I. Larkin for 
numerous suggestions, to V. M. Galitskil for valu
able remarks, and to I. Yu. Kobzarev and L. B. 
Okun' for interesting discussions and cooperation 
which helped to carry this work to completion. 

APPENDIX 

DERIVATION OF THE FORMULA FOR THE POLE 
TERM IN THE AMPLITUDE 

The condition for the matching of the outside 
wave function fout ( r) in the region r > r 0 with 
the function in the region r < r 0 is, according to 
Eq. (10), of the form 

rt'out (ro) . ( ) 
f () =wi(ro,E)-j-1, A.1 
out ro 

where the function wj is determined by the internal 
region and the term j + 1 is separated out for nota
tional convenience. For bound states fout is given 
by Eq. (llb) and the relation (A.1) gives the eigen
value equations (12)- (14): 

(A.2) 

with Qj defined by Eq. (13). For the continuum 
spectrum fout is of the form 

fout (r) = ~~nst (cos Mi+'f, (kr)- sin bNi+'/, (kr)) (A.3) 
r kr 

( N being the Neumann function), so that the match
ing condition (A.1) determines tan <5. From Eqs. 
(A.1) and (A.3) we obtain for a given partial wave 
amplitude 

exp (2i<~) - 1 wi J i+' ', (kro) - kroJ i-'/, (kro) 
k '2ik H}+' 1, (kr0 ) [wi- kr0 H}_,12 (kro)!H}+'!, (kro)] 

(A.4) 
where Hb(z) = Jp(z) + iNp(z). For the analytic 
continuation of Eq. (A.4) into the region E < 2M 
we note that k- i(M2 -E2/4) 114 = iK, Hb(kr0 ) 

- 27r- 1(- i )P+ 1 Kp( Kr 0 ), so that the expression 
in the square brackets in the denominator of (A.4) 
goes over into Wj + Qj. and the poles of Eq. (A.4) 
are determined by Eq. (A.2), as they should be. 

To obtain the residue we replace in the numera
tor of Eq. (A.4) Wj by - Qj: 

-·- 1 . ' 
Jtff i+'/, (kro) 

(A.5) 
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where we have made use of a formula from the the
ory of Bessel functions (see, for example, [15J). 
As a result we find 

exp (2ib) -1 (-ht 

2ik E~; 2x (Ki+'/, (xr0))2 (£- J-t) d [wi + Qi (xro)]/dEIE=p. · 

(A.6) 

Let us note that in the derivation of Eq. (A.6) we 
have not made use of any specific properties of this 
problem so that this equation is, generally speak
ing, exact and applicable to realistic systems pro
vided that the radius r 0 is chosen outside the in
teraction region so that the wave function has the 
form (A.3). Of course, the formula is of practical 
value only if some properties of the logarithmic 
derivative Wj ( E, r 0) - j - 1 are known, for ex
ample in the case of an interaction that falls off 
sharply for r > r 0, etc. 
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