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With the vibrations of an oscillator in a medium with negative absorption as an example, it is 
shown that the nature of the reaction depends on the initial conditions, and that oscillations can 
also build up. It may be important to take into account this circumstance in the study of radio
frequency and optical quantum generators. 

IF a radiator (for example a moving charge) is 
situated in a medium, then the radiation reaction 
may differ greatly from radiation in vacuum. The 
foregoing is well known on the basis of many exam
ples, while a general analysis of the reaction force 
produced when a charge moves in an arbitrary trans
parent medium without spatial dispersion has al
ready been carried out by us [ 1]. It is of interest 
to generalize these results to allow for absorption 
and spatial dispersion by the medium. By the same 
token, we take into consideration the reaction con
nected with the radiation of longitudinal (plasma) 
waves, which is particularly significant in a plasma 
[ 2•3J. In addition, all the ionization losses are taken 
into account in this way automatically (see, for ex
ample, the paper by Tsytovich r4J ). 

Without dwelling on this group of problems, here 
we touch only on one unique case, namely the radi
ation reaction for media with negative absorption. 
It is precisely such media that are dealt with when 
waves are amplified or generated (this pertains in 
particular to quantum generators-masers and 
lasers). 

We assume, for simplicity, that the medium is 
isotropic and describe it by means of the complex 
dielectric constant 

8'(ro) = 81 - i82 = 8(ro)- i4na(ro) I ro. 

Then a > 0 in an absorbing medium and a = - I a I 
< 0 in a medium with negative absorption 1 l . For 
plane waves 

E = Eo e- i <wt-wnzfc> e-wxzfc; 

in such a medium 
(n - ix)2 = 8', n2 - x2 = 8 

and 
nx = - 2n:[ a Jlro, 

l)We can say, using a different terminology, that the me· 
dium with a < 0 employed here is absolutely unstable. We 
note also that the inequality o(w) < 0 is assumed satisfied 
only in a finite frequency interval. 

i.e., the signs of n and K are different. The sign 
of E can be arbitrary, but only when E > 0 does 
the index K - 0 when a - 0. We assume through
out that E > 0. 

Let us calculate now the work done by the field 
on the particle 

T 

A=~ evEdt 
0 

where v ( t) is the velocity of a particle with 
charge e. In the absence of an external field, the 
work A is equal to the change in the particle en
ergy due to the radiation of transverse electromag
netic waves and due to polarization losses; if 
spatial dispersion is taken into account, the latter 
loss is none other than the energy of the radiated 
longitudinal waves (we are dealing here with an 
isotropic medium; the losses connected with "short
range" collisions are not discussed here). 

In an absorbing medium (when a > 0) the work 
is A < 0, i.e., the particle slows down. For ex
ample, for an oscillator (a charge moving with 
velocity v = v0 cos v0t) the work of the radiated 
transverse field over the time T is in the dipole 
approximation 

where it is assumed that the medium is weakly 
absorbing, i.e., 

(1) 

(for an absorbing medium a > 0, but we have used 
the absolute-value sign in (2) to be able to use this 
inequality later on also when a < 0; the frequency 
w is assumed positive throughout, w > 0). 

If we now use the standard procedure under con
dition (2), but with a < 0, (see, for example, [ 5]) we 
obtain the result (1) with the sign reversed. The 
same (the reversal of the sign of A) occurs in the 
case of Cerenkov radiation 2l and for any other 

2lThis was noted earlier by V. P. Silin. 
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motion. This result, namely the build-up of oscil
lations in a medium with negative absorption, can
not be regarded as correct a priori. In fact, when 
a < 0 the waves in the medium become more in
tense, and it is clear from this alone that the me
dium has a reserve of energy. Therefore upon 
radiation the source could build up at the expense 
of the energy reserves in the medium. 

There is no doubt, however, that when a < 0 
the question of the radiation and the reaction force 
must be reexamined. It is sufficient to state that 
when a < 0 the radiation field in the medium builds 
up even in the absence of a source, and by the same 
token the problem can depend essentially on the 
initial conditions. We shall show that this is really 
the case. 

The purpose of the present article is to clarify 
the character of the radiation reaction 3l when 
a < 0 only to the extent of understanding the physi
cal picture of the process. We therefore confine 
ourselves to an examination of one very simple 
problem, radiation from an oscillator. In this case 
the simplest and clearest calculation is carried out 
by the so-called Hamiltonian method. We repre
sent the vector potential of the field in the form 

(3) 

The equation for A has the form 

4l'tcr aA 1 a h aA 
!::J.A- & liT - C2 at e at 

(4) 

where qJ is the scalar potential and, in connection 
with the presence of dispersion, € and a are op
erators. It will be shown in the appendix how the 
problem must be solved in the presence of disper
~ion. For the time being we put ~ = a ( 110 ) and 
E = E ( v0 ), and also 

+ ~ jext A;;dV = Y"4'ta~.;v 0 cosv0t 

(the dipole approximation for the oscillator). Then, 
after substituting (3), in (4), multiplying by A*A.', 
and integrating over the volume, we get J 

3llnasmuch as we take into consideration the.effect pro
duced on a particle not only by the field radiated by it but 
also by the field in the medium, the term "radiation reaction" 
assumes, of course, a somewhat arbitrary character. 

= fo cos vof = f (t); 

~ = f.t~> = 2na/e, v~ = c2k~/e, 

The solution of the system (5) under arbitrary 
initial conditions is elementary. The forced solu
tion of Eq. (5) is in this case 

· l _ 'fo 
q).f ( ) - (v~- v~)2 + 4!12"~ 

>< (- '\10 (v~- v~) sin v0l + 2~v~ cos v0l} 

and leads to the already mentioned formula for the 
radiation reaction A [ subject to condition (2) ] 

(6) 

This means that when a < 0 oscillations build up. 
Physically this is quite obvious, inasmuch as Eq. 
(5) is the oscillation equation for the field oscil
lators qA., with the oscillation of QA. when JJ > 0 
always "retarded" relative to the external force 
f; on the other hand, if JJ < 0, the osci,llation of qA_ 
is "advanced" relative to the external force. 
Therefore the work done by the force f on the 
field oscillator depends on the sign of JJ even as 
JJ - 0. On the other hand, if the oscillator starts 
radiating at a certain instant of time t = 0, then, of 
course, the value of A remains the same as in the 
case of forced oscillations, provided only that the 
field existing in the medium at the instant when the 
oscillator was turned on was identical with the 
field of the forced oscillations [this means that 
qll. ( 0) = qA.,f ( 0) and qA. ( 0) = qA.,f ( 0) ] • 

Let us consider now in somewhat greater detail 
the character of the radiation reaction in a medium 
with u < 0 in the case when all the fields were 
equal to zero prior to turning on the oscillator, i.e., 
qA. ( 0) = qA. ( O) = 0. Then we obtain in the usual 
fashion 

E = E (t, r= 0) =- 4n~a~.1 q~.1 (t). (7) 
A 

We recall that the first term in the curly bracket 
of the expression (6) iv0 exp ( iv0t) corresponds 
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to forced oscillation, and the other two correspond 
to natural oscillations of the system (5). When 

J.1. > 0 and J.1. T » 1 the terms corresponding to the 
natural oscillations in (7) are inessential and, for 
example, when J.1. « v0 [see (2) 1 , using the formula 

fl\12 l1 . 
~~ (v•-v~)2 + 4!12"~ = T6(v-v0)signf.L, (8) 

we obtain the expression (1). 
To analyze the case J.1. < 0 it is convenient to re

write (7) in the form 

A = _ 4e2v~ Vs f dt { f v2dv cos v0t J ( . t) 
3l'tc3 .l .l ~ 1 v, 

1=0 V=O 
~ 00 

+ ~ v•dv~osv0t J 2 (v, t)+ ~ v2dv~osv0t la(v, t)}; 
'loi=Q V=!J-

~ = (v2 -v~)2 + 4f.L2vg, 

J 1 = v0 [- (v2 - vg) sin v0t + 2f.LV0 cos vof], 

J 2 = (f.l2 -v2)-'1•{[-2f-Lvh+(v2 -v~)r1r2 ] &'•1 

+ [2f.Lv~r2- r 1r 2 (v2 - v~)l &'•1}, 

J 3 = e-~'-t {[v2 (v2 - v~) + 2f.L2v~] sin CVv2 - f.L2t) IV v2 f.L 

(9) 

When integrating with respect to v in (9) it is 
necessary to exercise a certain caution. This is 
connected, in particular, with the fact that formula 
(8) under the integral sign can be used only in the 
case when the integrand f ( v, t, J.l. ) as a function of 
v varies little in the interval I v - v0 I ~ I J.1. I for 
all values of t :::s T. If we take this circumstance 
into account, then it turns out that the character of 
the behavior of the expression for the work of the 
field A depends essentially on the value of the 
parameter I J.1. I T (we take into consideration be
low only time intervals v0 T » 1). Indeed, when 
I J.1. I T « 1 and v0 T » 1 the main contributions to 
the value of A [see (8) 1 are made by the terms 
with J 1 and J 3, which contain for values of v 
close to v0 the least rapidly oscillating expression 
for ~: 

<D = 2f.lV~ cos v0t [cos v0t- e-~'- 1 cos CV v2 - f.l2t)] 

or, leaving only the difference frequencies, 

<D z f.l'V~ [I - e-~'- 1 cos [(v0 - V v2 - f.l2) til. 

Thus, under the assumption made that I J.1. I T 
« 1, the value of ~ changes little in the frequency 
interval I v - v0 I ~ I J.1. I and we can employ for
mula (8) (see above). As a result we have 

(10) 

It follows therefore that in the time interval 
1/l J.1. I » T » 1/vo the radiation reaction corre
sponds to friction independently of the sign of J.1. • 

In both cases the oscillator consumes an equal 
amount of energy for the excitation of the electro
magnetic oscillations in the medium. The picture 
changes, however, quite radically at time intervals 
T so large that the following condition is satisfied 

(11) 

Unlike the case J.l. > 0, where the radiation reaction 
is characterized by expression (1), the values of A 
when J.l. < 0 and condition (11) is satisfied execute 
exponentially-growing oscillations even for small 
values of I J.l. I . This is connected with the fact that 
the term J 1 in (9), corresponding to the forced os
cillations, increases linearly, while J 2 and J 3 con
tain expressions that increase exponentially with 
increasing T. 

A direct estimate of the integral containing J2 
[see (9) 1 yields for I J.l. I « vo 

• o ,re"'v'"" ,., c 4 
A (J,) (T) z _o __ l!:__ e2 II'- I T sin v T 

3c" 3 o • "o 

(12) 

Thus, the value of A cJ2), roughly speaking, oscil
lates with frequency v0, and the amplitude of the os
cillations of A c J 2 ) increases exponentially. 

Let us proceed to estimate the third term in (9). 
It is easy to see that when I J.1. I - 0 and J.1. < 0 the 
main contribution to the expression ~ 1 = J 3 x 
cos ( v0t) It is made by the region offrequencies close 
to v0 <I v - v0 I ~ I J.1. I), but formula (8) becomes 
inapplicable by virtue of condition (11). Indeed, 
even the term in ~1 with the slowest oscillations 
has the form jJ.v~t;- 1 [exp ( -JJ.t)1 cos m, where 
the difference frequency is ~l = v0 - ..j v2 - J.l.2 • In 
view of this, ~1 ( v) subject to condition (11) is an 
oscillating function in an appreciable interval of 
the values of v (when I v- v0 I ~I JJ.I ). In parti
cular, if J.1. T · J.1. / v0 « 1, then we can write cos Ot 
= cos xt, where the new variable is x = v - v0• 

Then, carrying out elementary integration [see 
(9) 1 with respect to t and with respect to x within 
the limits of the width of the resonance curve 
t ( v) - I J.1. I < X < I J.1. I , we obtain approximately 
(we are writing out only the term with the slowest 
oscillations ) 
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(J,) e2u~v~ V 8 T ell• IT . . 
A (T)= 3c" (T~-t)"(smif-LIT+cp), 

if-LJT~l, 11<0, f1T·~t/''o<l, (13) 

where <P is a certain constant phase with order of 
magnitude unity. It follows from (13) that the 
quantity A <J3l ( T) oscillates in this case with a 
frequency equal to IJ.L I , and the amplitude of the 
oscillations increases as T [ exp ( I JJ. I T )] /( iJ. T )2• 

The oscillation frequency of the term A <J3l is much 
smaller than A <J2> when IJ.L I « v0• We note that 
the character of the behavior of A <J 3? remains the 
same even at such large values of T that the con
dition TJ.L 2/ v0 « 1 is not satisfied. 

Finally, the forced oscillations are characterized 
by a term A <J1 > which, as can be readily verified, 
coincides with expression(6)when Tv0 » 1 and 
IJ.L I « v0• It follows from (6), (12), and (13) that 
when IJ.L I « v0 the radiation reaction first 
( IJ.L I T « 1) hinders the oscillations of the oscil
lator (i.e., A< 0) regardless of the sign of J.L, and 
then, when IJ.L I T » 1 and iJ. < 0, the work done by 
the field on the oscillator becomes an oscillating 
quantity with a minimum oscillation frequency of 
the order of IJ.L I . Then the amplitude of the os
cillations of A increases exponentially. Thus, for 
the case of media with negative absorption (a < 0) 
for IJ.L I T » 1, generally speaking, there is no 
particular sense in speaking of the sign of the radi
ation friction, for it varies periodically in time. 
Further, the character of the radiation reaction de
pends on the initial conditions. For example, if at 
the instant when the oscillator is turned on there is 
present in the medium a field coinciding with the 
field of the forced oscillations, the radiation reac
tion corresponds to the buildup of oscillations [see 
(6) 1 . On the other hand, in the case of zero initial 
conditions (i.e., in the case when the field in the 
medium is zero when t = 0), the character of the 
behavior of the radiation reaction with time is 
more complicated, as was already discussed [see 
(10) -(13) 1 . 

In the present article we attempted only to clar
ify the character of the radiation reaction in the 
case of media with negative absorption ( amplifi
cation). It is also natural to raise the question of 
the possible value ofthis reaction in various systems 
containing amplifying media. We refer specifically, 
above all, to quantum generators operating in the 
radio band (masers) and in the optical regions 
(lasers). In such cases it is necessary to take in
to account the fact that the medium is bounded in 
space (this is equivalent to a certain degree to a 
limitation on the time T), and also go beyond the 

limits of linear electrodynamics (obviously the 
medium was regarded as linear in the discussion 
above). It is also quite clear that the results can 
be extended to include the case of media with spa
tial dispersion (in this case it is interesting to con
sider systems not only with absolute instability but 
also with convective instability). In addition, it is 
necessary to emphasize that the oscillator oscil
lations were assumed specified above, yet the neces
sity may arise of taking into account the influence 
of the radiation reaction on the motion of the radi
ating system (the oscillator). Finally, it is advan
tageous to carry out a quantum analysis of the 
question of radiation reaction for systems with two 
and more levels in the presence of a medium with 
1-L < 0. 

APPENDIX 

The use of the Hamiltonian method, i.e., the use 
of an equation of the type (5), is very convenient in 
the solution of many electrodynamic problems 
(particularly in the case of an anisotropic medium, 
where methods other than the Hamiltonian or the 
related Fourier method, are either lacking or are 
poorly developed). This, however, raises the ques
tion of consistent account of dispersion. It was in
dicated earlier [SJ that in a transparent medium it 
is possible to obtain the correct result by ignoring 
the dispersion in the calculation, but by assuming 
in the final result that the refractive index depends 
on the frequency. The same follows from [i,7J, and 
also from the calculations of V. V. Zheleznyakov. 
However, recognizing that this aspect was never 
discussed in the literature with sufficient detail and 
is at the same time quite important, particularly 
for media with negative absorption, we present here 
the corresponding analysis. 

From Eq. (4) we can readily obtain in analogy 
with the transition to the system (5) 

8 q" + 4naq" + k~c2q" = t (t); 
8/"'1 =s(w)i"'1, aet"'1 =a(w)i"'1• (A.1) 

The forced solution (A.l) is written in the form 
00 co 

q).. (t) = ~ ei"'1qs"J..w dw, f (t) = ~ ei"'1fwdw; (A.2) 
-oo -oo 

q"""' = fw [- s (w) w2 + 4niwa (w) + k~c2 ]-1 • (A.3) 

To find the solution of the homogeneous equation 

eq" + 4naq" + k~c2q" = 0 (A.4) 

we proceed in the usual fashion. Putting 
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we obtain the dispersion relation 

8 (- ir) r2 + 4ncr (- ir) r + k~c2 = 0. (A.5) 

This equation has, generally speaking, several 
roots rj = iwj which depend on k. If there are two 
such roots (j = 1, 2) then the general solution of 
(A.1) has the form 

00 

q).. (f) = ~ qa),w eiwfdro + qAler,t + qA2er,t' (A.6) 
-00 

where the amplitudes of the natural oscillations are 
determined from the initial conditions. 

Thus for the case considered above, when 
q,\ ( 0) = q,\ ( 0) = 0 and f ( t) = f0 cos v0t, we ob
tain in lieu of (7) 

v = kc I Y 8 (v0), f.L = f.L (v0) ~ 2ncr (v0) I 8 (v0), 8o = 8 (v0). 

(A. 7) 

It is thus easy to see that if dispersion is taken 
into account it is necessary to put in formulas (10) 
and (13) J.L = J.L ( v0 ) while in expression (12), the 
value of which is determined by the small values 
of v, we must put 

f.L = f.L (v) = f.L (0) = 2ncr (O)ie (0). 

It was assumed above that E ( w) ;;.; 0, or at any 
rate the possible occurrence of longitudinal waves 

was disregarded. In addition, if the dispersion con
dition (A.5) has more than two roots, it is necessary 
to specify for t = 0 higher derivatives of q ( t). 
This circumstance reflects the fact that in the case 
of an arbitrary dispersive medium the initial-value 
problem is solved correctly only if account is taken 
of the field in the medium when t < 0 (see [8], 

Sec. 5 ). 
The authors are grateful to A. A. Rukhadze for 

remarks. 
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