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Under conditions when the Larmor radii of the plasma particles do not exceed the screening 
radius of the Coulomb field, the effect of a magnetic field on particle-collision events be­
comes significant. Under these conditions, the relaxation time of electron and ion tempera­
tures is dependent upon the magnetic field. The appropriate values of relaxation time are 
determined both in a broad interval of relationships between electron and ion temperatures, 
and in a broad interval of magnetic-field values. 

l. Temperature relaxation in a completely ionized 
electron-ion plasma was investigated by many 
workers. It can be assumed here that, owing to 
the small mass ratio of the electron and the ion, 
the electrons and ions can be assumed to have 
Maxwellian momentum distributions with different 
temperatures over a wide range of the parameters 
characterizing the plasma. Denoting the electron 
and ion temperatures by Te and Ti, we have after 
Landau [t] 

where m is the electron mass, M the ion mass, 
and the effective collision frequency is given by 
the formula 
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Here e and ei are respectively the charges of the 
electron and the ion, Ni is the number of ions per 
unit volume, rn is the Debye screening radius of 
the Coulomb field in the plasma, given by the re­
lation 

(3) 

and finally rmin is the minimum impact param­
eter, which is determined either by the inapplica­
bility of perturbation theory (rmin"' e2/KT, 
where T is the larger of Te and Ti ), or by the 
inapplicability of the classical analysis ( rmin 
"' ti/ V mKTe ). 

Formula (1) is obtained under the assumption 
that the thermal velocity of the ions is small com­
pared with the thermal velocity of the electrons. 

This corresponds to the inequality 

T.lm >- T1/M. (4) 

In the derivation of formula (1) it was assumed, in 
addition, that the magnetic field does not influence 
the act of collision. This means that in order for 
formula (1) to be applicable, the inequality rB »rn 
must hold, where rB is the minimum Larmor ra­
dius of the plasma particles. We shall assume that 
the temperatures of the electrons and the ions sat­
isfy the relation 

(5) 

Then the Larmor radius of the electron is minimal. 
Therefore the corresponding inequality, for which 
the magnetic field B does not influence the colli­
sions of the particles, can be written in the form 

me ..,. [xT, 
reTB v m>-rv. (6) 

In the present communication we undertook to 
obtain results that extend Landau's result (1) to 
the case of strong fields, when it is necessary to 
take into account the influence of the magnetic field 
on the act of collision between the electron and the 
ion. 

It must be noted that an attempt to study the 
temperature relaxation in the case of a completely 
ionized plasma situated in a strong magnetic field 
was made by KiharaC2•3J. However, the results 
obtained in this case are in our opinion inexact. 
The reason for it was primarily the neglect of the 
ratio of the electron mass to the ion mass (see 
below). Therefore, there still remains a gap in 
plasma relaxation theory, connected with there-
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gion of large values of magnetic field intensity. 
The contents of the present paper is devoted to 
filling this gap. 

2. To investigate the temperature relaxation 
in a completely ionized electron-ion plasma situ­
ated in a strong magnetic field, we use the previ­
ously obtained [ 4J collision integral (see also [s]). 
Being interested in processes that change little 
over the characteristic collision time, we can 
write this collision integral in the following form 0 

0 

~ ~ N (' d-r:{v<q. b> (p t:) . a - A(a,b> (p -r:)} 
a l L.l b ~ {J a. apl [ l l a. 

Pa b -oo a T, Pa 

(7) 

where Nb is the number of particles of type b per 
unit volume; fa is the distribution function of the 
particles of type a, normalized to unity; the func­
tion Pa [ T, Pa1 is the momentum of the particle a, 
moving in a constant magnetic field, at the instant 
T, if its momentum at zero time was Pa; finally, 
the retarded diffusion and friction coefficients, 
Dij and Ai respectively, have the form 

(a,b) (' (' dk (4:n:eaeb) 2 (ab) 
D.·, (pa, t:) = .) dpb.) (2:n:)• ~ ktkj/S (t:, k, Va, Vb) 

(11) 

After an analogous transformation of the friction 
coefficient, we can write down the collision integral 
for particles of type a, colliding with particles of 
type b, the latter having a Maxwellian distribution, 
in the following form: 

N . a f ~0 d D(a,b)O ) [ a _j_ P~[T, Pal] 
b i I t: ii (Pa• t" · 

aPaLoo aP~[T,paJ ' maxTb 

X fa (Pa [t", Pal)} • 

(12) 

In our problem both types of particles ( elec­
trons and ions) have Maxwellian momentum distri­
butions. Therefore, multiplying the kinetic equa­
tion for the electrons by p2 /3m and integrating 
over the momenta of the electrons, we obtain the 
equation 

dT.fdt = (T; - T.)hr, (13) 

(8) where 
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X 
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(9) 

Here 

1- cos QbT [Bvb] sin QbT [B [Bvb]]} + n -B-. + -n- -B-2- • 
b b 

(10)* 

Ua = eaB/mac is the Larmor frequency of the par­
ticle of type a. 

Under conditions when fb is Maxwellian, the 
diffusion coefficient (8) can be represented, after 
integration over the momenta of particle b, in the 
form 

l)This collision integral is suitable both for spatially­
homogeneous distributions and for distributions which vary 
little over distances on the order of the effective interaction 
region of the particles. 

*[Bv] = B x v. 

2 N; 
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(14) 

Bearing in mind formula (11) and integrating in the 
right half of (14) over the momenta, we obtain 

1 _ 2 N, 00~' ~ dk ( 4:rtee1 )
2 
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f (kB)2 [kB]2 sin QeT} f (kB)2 , [kBj2 sin Q1T \ 
X \ -----w- t" + -----w-~ t -----w- t: T ----w-~I. 

{ [xTe , xT1 J (kB)2 2 [kB]2 [xTe sin2 (QeT/2) 
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. xT1 sin2 (Q1T/2) ]\ (15) 
+ M QI j' 

In formula (15) the integration with respect to k, 
as follows from the derivation of the collision in­
tegral [4], must be carried out over a region 
bounded both on the side of large values of k 
( kmax = riihn) and of the small ones ( kmin = rf] ) . 
Taking this fact into account, we can transform 
(15) into 

where 

1 2m 4 "V2Ji:e2er N; 
---- . L 
Ty - M 3 V m (xTe)';, ' 

(16) 
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Here 

z 

ffimtn = Y xTe ;2m k, 11in• <D (z) = (2/ Vil) ~ e-1' dt; (18) 
0 

[ mr.J cp (t, x) = 1 + M;e x2+ [ 1 - x2 ]ljl (t), (19a) 

•h (t) -- 1 J . 2 t + mT i 1 . 2 .. tl 
"' - 72 l sm MT e II• sm v J . (19b) 

In the integrand of (17), x is the cosine of the 
angle between the direction of the magnetic field 
and the wave vector k, while t is the time, which 
is measured in units of I Qe 1-1• The instant t = 0 
corresponds here to the shortest distance between 
particles, and the instant t = oo corresponds to 
their flying apart, provided, of course, this is 
possible. 

For t « 1, which corresponds to a scattering 
time of the colliding particles which is much 
smaller than the Larmor revolution period of the 
electrons, the integrand in the right half of (19b) 
simplifies to 

1 { (2 °max ) IT\ (2t 0 min ) 4 t 
T <D 'TQ.T --v ~ + -vn~ 

X [ ffimtn exp (- 4t2 W~·n ) - ffimax exp (- 4/2 ro:t ) ]} . 

Account was taken here of the inequality (4) and 
also of the fact that wmax » I Qe 1. 

(20) 

For weak magnetic fields (I Qe I « Wmin) ex­
pression (20) actually differs from zero only when 
t < I Qe I /2Wmin· Therefore for such weak fields 
we obtain 

(i)rnax r D 
L 0 =In--== In--. 

Wmin r min 
(21) 

Here and below we confine ourselves to logarithmic 
accuracy. In other words, we neglect quantities on 

the order of unity compared withlarge logarithms. 
Formula (21), in conjunction with formula (16), 
leads to the value of the temperature relaxation 
time obtained in [1], where the influence of the 
magnetic field on the particle collision was com­
pletely neglected. This corresponds to formula 
(1). 

3. In the case of interest to us, that of strong 
magnetic fields, when the Larmor frequency of 
the electrons is appreciably larger than Wmin• 
we also confine ourselves to logarithmic accuracy. 
Then the integral (17) can be represented in the 
form of the sum 

L = L 0 + 6L. (22) 

The first term corresponds to integration over the 
region t < 1, when the integrand is approximated 
by (20). This region corresponds to a short dis­
tance between particles, at which the influence of 
the magnetic field on the collision act is insignifi­
cant. We then obtain for LQ 

(23) 

The second term in (22) is determined principally 
by the values of the integrand of (20) correspond­
ing to t » 1. Bearing this in mind, we can first 
assume the maximum frequency to be infinite. 
This corresponds to the fact that when t > 1 only 
long-range collisions occur. Then 

00 1 

IlL = (' !!!___ (' dx 1 
.\ t l_ x2 ::-;V::-=x72 =-='ljJ=(;=ct ):::-
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(24) 

Bearing in mind the inequality I Qe I » Wmin. we 
can assume, if we confine ourselves to logarithmic 
accuracy, that 

Using formula (25) we can integrate with re­
spect to x in the right half of (24). Bearing in 
mind at the same time that in accordance with 
(19b) the function lj!( t) is small compared with 
unity when t is large, and also neglecting all ex-
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pressions which make contributions of order of 
unity to oL, we obtain 

00 

+ In .3_ \' !!!_ sin 2bt (2wmin t V•h (t)) 
· e .l t 2bt 'fJ I Qe I 'I' ' 
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(27) 

~ !!!__ sin 2bt 'fJ (2wmin t V'j){i)) In ~ . 
., t 2bt I Qe 1 2wmint 

10, l!2wmin (2 8) 

The first term of (26) yields logarithmic expres­
sions in the first power, while the second term 
leads to doubly logarithmic additions. Indeed, from 
formula (27) we obtain 

(29) 

(30) 

2 { I Qe I VMTe } oL1 = In_ In -- + In --
e 2wmin mT1 

(31) 

In the limit of large fields, when 2wmin « ni, the 
second term of formula (28) is immaterial. In ad­
dition, the function 71 is equal to unity everywhere. 
All this leads to an expression that does not depend 
on the magnetic field 

00 = \ !!!__ si~ 2bt In t . 
j t 2bt Vsin2 t+(mT.fMT )(sin2 bt)/62 (32) 
1 ' e 

Assuming that ln (MTe/mTi) and 
ln ( m Ti /MTeo2 ) greatly exceed unity, we can 
write with doubly-logarithmic accuracy the fol­
lowing approximate expression for the right half 
of (32): 

J MT, \iVmT1 Q;) OL2 = 4 In mf-: In MT 02- for 2wmtn ~ Q 1• (33) 
z e- "'·i 

For a hydrogen plasma and for the case of approx­
imately equal electron and ion temperatures, the 
right half of (33) is approximately equal to 21. 

Numerical integration of the right of (32) yields 
22 in this case. 

At somewhat smaller magnetic fields, when the 
following inequality holds true 

Qi ~ 2wmin ~ Q, V MTefmT,, 

the second term of (28) also makes an appreciable 
contribution. Bearing in mind in this case that 
Wmin is itself determined only accurate to a fac­
tor of order of unity, we obtain 

( mT1 ) 1 ( 2wmin ) 2 

bL2 = F MTe ; 62 - z In~ . 

Finally, in the last case, when the inequality 

I Q, I~ 2Wmin ~ VMTelmTiQi 

is satisfied, formula (28) yields 

1 MTe Q, 1 ( MT,) 
bL2 = -2 In-T. ln 2--.-+ -4 0 In-T .. 

m z 00mzn m z 

(34) 

(35) 

Calculation with higher accuracy is meaning­
less, since only the order of magnitude of Wmin 
is determined. The same considerations allow us 
to state that we must not attach great significance 
to the second term of (31). The first term of (31) 
should be retained only if it is large compared with 
the second. Formulas (22), (23), and (29)-(35) in 
conjunction with (16) determine TT, the tempera­
ture relaxation time of an electron4on plasma 
situated in a strong magnetic field. As follows 
from these formulas, such a relaxation time turns 
out to depend on the magnetic field intensity. 

A few words should be said also on the numeri­
cal values of the quantities, due to the influence of 
the strong magnetic field. For this purpose we 
note first that when using the plasma parameters 
that are nowadays of interest, the usual Coulomb 
logarithm L0 [see formula (21)] can assume 
values from 5 to 25. In our analysis the assump­
tion Wmin « I !:"le I denotes that the logarithm of 
the ratio of the frequencies is large compared 
with unity. This means in turn that the use of our 
asymptotic formulas is possible for plasmas with 
L0 > 10. The latter is connected with the fact that 
within the framework of the assumption of weak 
Coulomb interaction, which is the basis of the 
collision integral which we are using, and when 
we confine ourselves to logarithmic accuracy, 
the ratio Wmaxl!:"le must be large. This ratio is 
large if the inequality B « 10T3/2 is satisfied, 
where T is the temperature in degrees and B is 
in Gausses. Bearing in mind this limitation on 
the field, we point out that in the case of very 
strong fields, as was already mentioned earlier, 
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for an almost-isothermal hydrogen plasma the 
doubly logarithmic addition (33) reaches an order 
of 20. This value is attained at fields B ~ 5-./N. 
In particular, this may be realized, for example, 
for N"' 5 x 107 cm-3 and B"' 3 x 104 G. Further, 
when B,..... VN/6, which corresponds to the maxi­
mum value given by (35), the doubly-logarithmic 
addition has a value ,..... 14 also for a hydrogen 
plasma with nearly equal electron and ion tem­
peratures. The figures presented show that the 
formulas obtained above disclose the appreciable 
influence of the magnetic field on the temperature 
relaxation in a plasma. 

4. In conclusion we must dwell on a comparison 
of the results obtained above and the result found 
by Kihara [2•3] for the temperature relaxation time 
in a fully ionized plasma in the presence of a strong 
magnetic field. In this investigations, in calculat­
ing the relaxation time, a method different from 
ours was used. We therefore actually indicate 
those items in [2•3] which cause the discrepancy 
with our results. However, it is first necessary 
to point out the discrepancy itself, which consists 
in the fact that the doubly-logarithmic addition 
obtained in [2•3] has the form of the square of the 

logarithm of the ratio I ~e II Wmin• whereas in our 
case the doubly logarithmic addition is given by 
expressions (32)-(35). By the same token, the 
influence of the magnetic field and the relaxation 
turns out to be quite different. 

The reason for obtaining different results is 
due primarily to the fact that in [2•3] the ion mass 
was assumed to be infinite. We did not assume so, 
and our final formulas depend appreciably on the 
ratio of the ion and electron masses. Such a de­
pendence is so essential, that an attempt to go to 
the limit M - oo leads to logarithmically diverg­
ing expressions. It is therefore necessary to ex­
pect in [2•3] a diverging expression for the addi-

tion to the Coulomb logarithm. The absence of 
such divergences in those papers is due to the 
fact that although their calculations are within the 
framework of perturbation theory, the Coulomb 
interaction is used, which is not suitable in this 
analysis for either large or short distances. 

We point out, finally that the doubly logarithmic 
addition (35) coincides, apart from a coefficient %. 
with the additions obtained by Belyaev [6] and by 
Gurevich and Firsov [7], who calculated the coeffi­
cient of diffusion in the plasma transversely to the 
magnetic field. It must be said that at large fields 
our doubly logarithmic expressions differ appre­
ciably from those obtained by Belyaev [6]. This is 
not surprising, since our analysis pertains to an 
entirely different relaxation process, and it can 
be verified that, generally speaking, different re­
laxation times arise for different relaxation proc­
esses in a plasma situated in a strong magnetic 
field. 
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