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Group theory methods are used to derive a Hamiltonian for spin-phonon interaction in 
crystals with several constants which include all the possible mechanisms for spin-phonon 
interaction. It is proposed that these constants be found from experiment. 

IT is well known ( cf., for example, [t]) that the 3Csp for the spin-phonon interaction. Usually one 
spin Hamiltonian method is very fruitful for the assumes some relaxation mechanism, finds the 
description of paramagnetic resonance spectra in explicit form of the operator 3Csp. [2•3] and then 
crystals. This method enables one to characterize the problem reduces to finding the matrix ele-
the paramagnetic resonance spectrum by a few ments of 3Csp between the energy levels given by 
constants, whose determination is the central prob- the spin Hamiltonian. Without considering any 
lem of experiments in the field of paramagnetic specific interaction mechanism, we want to start 
resonance. The problem for theory is to obtain from the symmetry properties and get expressions 
these constants from some definite model for the for the matrix elements in terms of several inde-
crystal. One may ask: Can one describe the spin- pendent parameters which take account of all the 
phonon interaction by introducing a definite num- possible mechanisms for spin-phonon interaction. 
ber of parameters which depend on the nature of We start from the fact that every interaction of 
the mechanism of spin-phonon interaction? In the the paramagnetic particle with the lattice must be 
present paper, using group theory methods, we invariant with respect to the symmetry group G 
shall show how one can obtain the Hamiltonian for its location in the lattice. Here we are obvi-
for the spin-phonon interaction by using the sym­
metry properties of the vibrations of the particles 
surrounding the paramagnetic ion and the sym­
metry properties of the wave functions of the 
paramagnetic ion, which are assumed to be known 
(for example, from the spin Hamiltonian). 

1. GENERAL RELATIONS 

Let us consider the two-particle function for 
the interaction between particles in a crystal con­
taining paramagnetic ions: 

(1) 

where lrikl = .J(xi -xk) 2 + (Yi -yk) 2 + (zi -zk) 2 

is the distance between the particles at the i-th and 
j-th sites in the crystal lattice, Si and Sk are the 
corresponding spin variables. Of all the interac­
tions in (1), we shall be interested only in those 
interactions of the paramagnetic particles with 
one another and with other (nonmagnetic) par­
ticles which depend on the values of the magnetic 
moments. Under the influence of the lattice vibra­
tions, these interactions will vary. This variable 
part of the coupling energy (1) gives the operator 

ously making the same approximation as in the 
theory of small vibrations, assuming that the sym­
metry of the displaced configuration of the particles 
differs negligibly from the symmetry of the equi­
librium configuration. If in addition we make the 
natural assumption that the main contribution to 
this interaction comes only from binding to near­
est neighbors, the symmetry of 3Csp is determined 
by the symmetry of the position of the nearest par­
ticles surrounding the particular paramagnetic 
particle (or ion). Now, by introducing the sym­
metry coordinates Q~k for these nearest neigh­
bors and using (1), we can write the general ex­
pression for 3Csp in the following invariant form: 

.o/Csp=~~(~_Vf.kQt.k+ ~ W,j~kQ~.kQf.k)· (2) 
k ~./ a,:,8, i,j 

a I a af3 2 I a f3 Here vj,k = avk aQj,k and wij,k =a vk aQi,kElQj,k 
are functions depending only on the coordinates of 
the k-th paramagnetic particle and the particles 
immediately surrounding it; a labels the irre­
ducible representation of the group G; j labels 
the corresponding term in the a-th irreducible 
representation. 

The symmetry coordinates Q~k are linear com-
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binations of the relative displacements urk of the 
nearest particles: 

(a = x, y, z), (3) 
io 

which in turn can be expressed in terms of quanti­
ties characterizing the lattice: [4] 

(4) 
p 

where M is the mass of the crystal, <I>pa is the 
unit polarization vector for the p-th normal lattice 
vibration; afj and ap are the creation and annihila­
tion operators for phonons with frequency wp and 
wave vector kp; ~p is an arbitrary phase. 

We introduce the notation 

and rewrite (2) in the form 

3tsp = T 2J ( ~ V'/.kA'f:~Pp 
a,J, p 

-t- 2J W~f.kA~:ok A~:,/ P0 Pq+ .. ·)· 
a, {3, i, j, p,q 

(5) 

From now on we shall assume that all the para­
magnetic particles are identical. Then if we neg­
lect the effect of particles located on the boundary 
of the crystal, the summation over k in (5) re­
duces to multiplication by the total number N of 
paramagnetic particles. Expression (5) is con­
venient in that it enables us, on the basis of 
Koster's theorem [S] to write the matrix elements 
of 3Csp between wave functions which transform 
irreducibly under the symmetry operations of the 
group G. 

In the absence of the magnetic field, the energy 
l8'Vels of the paramagnetic particle will have the 
degeneracy allowed by the symmetry of the crys­
tal. The degenerate wave functions belonging to a 
given energy level may be chosen to be a basis of 
an irreducible representation of the group G. Also, 
we shall be interested in a system of degenerate 
levels which are close to one another ( ~ 1 em - 1 ) 

but far from other levels of the paramagnetic par­
ticle in the crystalline field. Thus, when the mag­
netic field becomes large, it is sufficient to treat 
the interaction only between close-lying levels. 

Suppose we have an energy level Ea, belonging 
to the irreducible representation r a E G with 
eigenfunctions wf (i = 1, ... 'na, where na is the 
degree of degeneracy), and a close-lying level Ef3 
with eigenfunctions wf (j = 1, ... , m13 ), E13- Ea 
= ~. Following Koster, [16 ] we can immediately 

write the matrix of 3Csp between the states Ea 
and Ef3 (and within them): 

ny 

3£~~ (m-+ n) = {- 2J P p <'1'::, I2J ~ VJ. k AJ:: I 'I'~) + .. · 
k, p y /=1 

1 ny 

2 2J 2J Aj: ~Pp <'1'::, IV/. kl 'I'~)+· .. 
k, p, y i=l 

"Y 
1 ~ y, s ~ AY, kQs, a{J + d t' t = 2 "'-i qaf3 "'-i /.P J,k;mn a qua ra lC erm 

k,p,Y,S f=l (6) 

Here the q"{;; ( s = 1, 2, ... ) are constants which in 
general include all possible mechanisms of spin­
phonon interaction as well as the effects of the 
crystalline field. The number of q's equals the 
number of times r y is contained in the direct 
product r ~ X r {3 (which is not greater than tWO 
for any of the crystallographic groups ) . The 
Qj·~~ n are known matrices which depend only 
on' the properties of the representations r a and 
r {3 of the group G. A method for finding these 
matrices was given by Koster. [S] We have not 
written the quadratic term in (6), because the ma­
trix of the operator w~~k· which transforms like 
r ~ x r {3• can be written by analogy to the matrix 

vj,k, after expanding the direct product in terms 
of irreducible representations. 

When the magnetic field is switched on, the 
degeneracy of the levels Ea and Ef3 is com­
pletely removed, the quantities of practical inter­
est are precisely the transition probabilities be­
tween the magnetic sublevels (a- a'). Let 
;reg!, be the matrix elements of the spin -phonon 
interaction connecting the levels a - a' in the 
magnetic field. The connection between JC';ff, and 
;re;:fn is easily found by expanding the functions 
I a) in eigenfunctions I m ) : 

(7) 
n 

and then 

,waf3 ~ R• I'Wa(l R 
Vl aa' = ~ maOL- mn na' • (8) 

nt, n 

Finding the unitary transformation R is equiv­
alent to diagonalizing the matrix of the operator 
V = {3H • ~ ( Li + 2Si) between the states m - n 
in the crystalline field, since the interaction of 
the paramagnetic particles with the external field 
can be treated as a perturbation. To find the gen­
eral form of this matrix, following Koster, [6] we 
split the Hamiltonian giving the spectrum of the 
system of paramagnetic particles into two parts: 

(9) 
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We include in JC0 all the interactions which do not 
depend on the external magnetic field. The exact 
wave functions of JC0 can be classified (without 
finding them) according to the irreducible repre­
sentations of the group G. Now writing V as a 
sum of operators, each of which transforms ac­
cording to an irreducible representation r 'Y E G: 

ny 

v = ~~ ~ m(~<L,-t-2s,)f. (10) 
y k=l i k 

we immediately write the matrix of V between the 
states m- n: 

ny 

V~n = ~ ~ ~ HJ, ('I'~ I (~ (L; + 2S;) ):J 'I'~) 
y k=l i 

ny 

f.l~ y,s ~ HYUs,af3 
= p LJ ga.{3 LJ k k; mn• 

Y, s k=l 

(11) 

Again the g'{;ff are constants which include all the 
effects of the crystalline field and the U~~~ are 

' known matrices. 
The diagonalization of (11) gives the dependence 

of the split levels on the applied magnetic field, 
where the corresponding eigenfunctions are re­
lated to the initial ones (in the absence of mag­
netic field) by the transformation R. After find­
ing it we calculate from (8) the general expres­
sions for the matrix elements of :te'g/j, as a func­
tion of the applied magnetic field and the lattice 
variables. Obviously one is not always able to 
diagonalize (11) and find the transformation R. 
We shall therefore consider some practically im­
portant specific cases. 

2. COMPOUNDS OF ELEMENTS OF THE IRON 
GROUP 

In these compounds the effect of the crystalline 
field is usually stronger than the spin-orbit cou­
pling. As usual we consider separately the cou­
pling of each paramagnetic ion to the lattice; this 
is described by the Hamiltonian: 

::J{ = ::J{ o + ::J{ LS -t- :J{ 55 + 3{ Z· (12) 

We have included in JC0 the energy of the free ion 
and its interaction with the crystal field. The re­
maining terms in the Hamiltonian can be treated 
as a perturbation: 

is the spin -orbit interaction operator; 

::Jess=- p[(LS)2 -t-}(LS)- +L (L + 1) S (S + 1)] 
is the spin-spin interaction operator; 

::Jez = ~ (L + 2S) H 

is the energy of the ion in the external magnetic 
field ( Zeeman energy). 

In most salts the crystal field can be split into 
two components: a strong field with cubic symme­
try and a weak field with lower symmetry (usually 
trigonal or tetragonal). The cubic field is often 
produced by six water molecules located at the 
vertices of an octahedron whose center is occupied 
by the paramagnetic ion. We shall consider ions 
whose lowest orbital state is a singlet in a cubic 
field (Cr3+, v2+, Ni2+ ). One can also treat Cr2+, 

Mn3+, and Cu 2+ in this way, if the field of lower 
symmetry is tetragonal. For these ions the low­
est orbital of the r 3 level in the cubic field re­
mains a doublet, while the spin-orbit coupling has 
no effect whatsoever (since r; x r 3 does not con­
tain r 4 ). The trigonal field splits it, leaving a 
( 2 S + 1) -fold spin degeneracy. We shall show that 
for compounds containing these ions one can obtain 
in place of (8) a general expression for the Hamil­
tonian of the spin-phonon interaction, with which 
one can easily calculate the probabilities for indi­
vidual transitions between spin states in the mag­
netic field. 

We shall now start from the exact eigenfunc­
tions of JC0 and proceed exactly as one does in 
deriving the spin Hamiltonian. [ 7] The unper­
turbed Hamiltonian JC0 does not depend on the 
spin variables, so (6) can be written in terms of 
constants which depend on the symmetry proper­
ties of the orbital functions alone. The total wave 
functions for JC0 are of the form llt('Y) = llt£'\s 
where llt£') is an orbital wave function belonging 
to the irreducible representation 'Y of the symme­
try group of the surroundings; the spin wave func­
tion xs belongs to the identity representation of 
this group, since JC0 does not contain the spin­
orbit interaction. In Eqs. (5) and (10), r a and 
r 13 are now the representations which correspond 
to the orbital wave functions (where .6. is the 
splitting in the cubic field). If r a is a one­
dimensional representation, the transformation R 
can be found immediately. In fact, perturbation 
theory for a nondegenerate state enables us to 
write (7) in the form 

cp (fa.)=~ [<'loll+ v~! /(E~- EF)l 'I', (13) 
n 

[where n numbers the states in r 13; 'lt0 = llt( r a)]. 
Then 

R~! = <'lon + v~~/(E~- £~); v = ::JeLs +::Jess+ ::Jez. (14) 

Since .6. is sufficiently large, we can always neg-
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lect the splitting of the level r {3 by the field of low 
symmetry and by the spin-orbit interaction, i.e., 
we can assume E'&- E~ = - I ~ I independent of n. 
In R~ the spin variables and the magnetic field 
appear as parameters, so in place of (8) we can 
write the spin-phonon interaction Hamiltonian for 
transitions within r a= 

1'{1) f'lii''-'1. 1 "'V (V• a/3 t'li!/3ct ) 1 "'V v• a~ 1'1£~13 Vl3a u~sp=.o~oo -If .LJ on u~no +c.c. +"X" .LJ on .o~nn' n'o• 
n nn' (15) 

The first term JC&ljO! does not depend on the spin 
variables and can be dropped, the second is linear 
in the spin variables and the third is quadratic. 
Obviously the third term must vanish for S = t;2• 

For S > %. it is often greater than the second 
term. This is related to the fact that the second 
term usually vanishes because of invariance of 
the states r a and r {3 under time rever sal [SJ 

("Van Vleck annihilation" [3J). 
Among the free ions of elements of the iron 

group one finds only S, D, and F terms. We first 
consider D and F terms, to which formula (15) 
is immediately applicable. 

1) F term ( Cr3+, V2+, Ni 2+); group 0. In these 
compounds, the lowest level in the field of cubic 
symmetry is the orbital singlet r 2, which has a 
( 28 + 1 ) -fold spin degeneracy. The field of lower 
symmetry, which does not act on the electron spin, 
can give rise only to a negligible shift of the level. 
In first approximation the spin-orbit coupling is 
zero and in second approximation it is of order 
1 em - 1, the same order as the Zeeman energy and 
the spin-spin interaction. Thus the representation 
of the form of (10) for the operator V in (14) has 
the form 

V = 2~SH + {-pL (L + I) S (S + I) 

+~(AS,+ ~H;- i pS,)L,., 

i = X, y, Z. (16) 

The first two terms in (16) transform according to 
the irreducible representation r 1 of the cubic 
group (with respect to L), while the components 
of the orbital angular momentum L transform ac­
cording to the three-dimensional representation 
r 4 of the cubic group. Since r 2 x r 1 = r 1, r 2 r 5 

= r 4 and r 2 ·X r 4 = r 5• the only nonzero matriX 
elements from the first two terms will be within 
r2; the third term will couple the states of r2 only 
with those in r 5• Using (14), we have 

R~~s> = 60n-~ ~ ('AS,+ ~H;-} pS;) (f2l L, f~) 
i 

= 6on -ri-lg (f2 X fs) ~ ( 'ASt + f,H;-} pSt) Ut(f2f;), 
i (17) 

where ~ = E~ -EP. while the matrices Ui (r2rr) 
have the form 

Using the symmetry properties of the normal co­
ordinates for the complex X- Y 6, [s] we write the 
linear part of (5): 

3 2 

t'li! - "'V ( "'V v\s>A\5> , "'V v\a> A \3) + v<1>A (1)) P (18) 
iT~ sp - .LJ .LJ 1 1. p T .LJ I 1. P 1 1,p P• 

p ]=l 1=1 

This operator does not couple r 2 with r 5 ( r 2 X r 5 

= r 4 ), so the second term in (15) vanishes. The 
matrix elements of JCsp within r 2 are immedi­
ately written [ cf. (6)]: 

3 2 

3C~m = q (f,) ~ A}~~ Q}~~m + q (f3) ~ A}~~ Q}~~lm 
]=l ]=1 

(19) 

Computations give for the matrices 

Qi5) = 1 0 0 ' (0 1 0) 
2 = 000' Q(5) (0 0 1) Q(5) (0 0 0) 

3 = 0 0 1 ' 
0 0 0 1 0 0 0 1 0, 

(- y3 0 0) Qi3) = 0 y3 0 ' 
0 0 0 

(-1 0 0) '1 0 0) Q<a> = o -1 o Q<1> = (o 1 o 
2 oo2' 1 oot· 

Finally we get from (15), (17), and (19): 

;;tP = g2 (f 2 X f ,) [J{P (f s) + ;JCP (fa) + JfP (f 1) ]j L12 ; 

;;tP(f5) = q (f 5) [a2 ({SxSu} Ai~>P + {SxSz} A~~>P + {SzSu} Ai:>p) 

+ 2a~ ({SyHx} Ai:>P + {SzHx} A~~>P + {SzHu} A~:>pJ, 

;JtP (fa)= q (fa) [a2 (3S;- S (S + I) 

+ 2a~ (3SzHz- SH)l Ai:>P 

+ J13[a2 (S~-S~) + 2(;(~ (SuHu- SxHx)l A~:>p, 

;;tP (f 1) = q (f 1) Ai~>P [a2S (S + I) + 2a~ SH ]. 

i, j = X, y, Z, C( = I. - 1/ 2p. (20) 

We have neglected terms quadratic in the ex­
ternal field H. It is easy to show that including the 
quadratic terms in (6) leads to an expression for 
JCsp which is analogous to (20), where the linear 
combinations A~p are replaced by quadratic ex­
pressions ( AipAjq) a, which transform according 
to the same representation of the cubic group. 

Thus the relaxation is characterized by three 
constants, for both first and second order proc­
esses. In [3] values of the constants q( r 3 ) and 
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q(r 5) are given for the Kronig-Van Vleck mech­
anism. [3] The completely symmetric vibration 
A~~b was not treated by Van Vleck, but it is clear 
from (20) that in the presence of the magnetic field 
it can give rise to relaxation transitions. In prac­
tice it seems that one can always neglect the terms 
in (20) which depend on the magnetic field [to or­
der .BI H 1/(A. - 1/ 2 p )] and assume that only the two 
constants q(r3 ) and q(r 5 ) are important. 

We shall discuss the case of lower symmetry 
for the example of the D terms. 

2) D term ( Cr2+, Mn3+ ). In compounds con­
taining these ions in a cubic field, the orbital dou­
blet r 3 remains lowest. Since r 3 X r 3 does not 
contain r 4, the spin-orbit coupling cannot split 
it. A field of tetragonal symmetry splits it into 
two singlets, r 1 and r 3 (in the group D4h). 

Computations based on (15)-(19) give 

;Jfp = Ll-2 (J{P (1\) + ;JfP (fa)+ ;JfP (1'4)]; 

;;tP (f1) = q (1\) A~1l [a2 (S~ + S~) + 2a~ (SxHx + SuHu)], 

;;eP (fa) = q (fa) A ~a> [a2 (S~- S~) + 2a~ (SuH u - SxH x) ], 

;;eP = ~12 (;JeP (f 1) + ;;eP (l'a)); 

JeP (f1) =A~ [a2 {S+S-} + 2a~ {S+H-}l q (f1), 

;;eP(fa)=q (f3){[a2 (S+)2 + 2a~S+H+JA; (fa) +!a2 (S-)2 

Here 

H+ = Hx + iHu, H- = Hx.- iHu, 

A; Wa) = Ab1> (I'a) + iA;> (f 3), 

A~ (fa) = A~1) (fa)- iA~2) (fa). 

(22) 

The relaxation is described by just two con­
stants: q ( r 1 ) and q ( r 3 ). For second order proc­
esses a third constant appears, coming from the 
term 

I'W q(f2)(A A )(2)[ 2(S2 2 R s J O~pq = -~ i,p j,q a x- Sy) +Up ( xHx -SyHy). 

Finally, for S = % (for example, Ti3+) we must 
include the second term in (15), which is different 
from zero, if we take account of the Zeeman split­

(21) ting of the spin levels. Then in place of (22) we 
have, for S = Y2, 

(where ~ is the overall splitting in the cubic 
field). All three constants are important. The 
contribution to the relaxation from the totally 
symmetric vibration A~0 can no longer be 
neglected. 

For second order processes we get another con­
stant, from the term 1> (q(ri)/~2 )(A.Sz + ,BHz 
- % pSz )2• It is interesting to note that if the low­
est state in the cubic field is an orbital triplet, 
which splits into a singlet r 4 and a doublet r 5 

in the field of tetragonal symmetry, the expres­
sion for xP is gotten from (21) by replacing ~ 
by 6 = E4 - E5 and substituting the appropriate 
constants. Since 6 « ~. we arrive at the well 
known fact that the spin-lattice coupling should 
be much stronger in this case. 

Thus, in a field of tetragonal symmetry the re­
laxation is described by three constants for first 
order processes and by four constants for second 
order processes. 

Suppose now that 6 is the splitting of the lowest 
triplet in a field of trigonal symmetry (groups D3d 
and C3v) and 6 « ~. We then get for Xsp in the 
case of first order processes 

1>From now on we shall drop the term p(L·S)2 in the spin­
spin interaction energy ( 12). 

(23) 

For second order processes there is again only 
one essential constant. 

S state. For an S state, the Eqs. (15)-(19) are 
not valid and we must start from (2), in which the 
functions vfk are replaced by the appropriate 
combinations of spin variables. Using (6)-(8) one 
then finds the matrix elements of Xsp as a func­
tion of the field and the lattice variables. In this 
case one can, however, formally write the expres­
sion in terms of the spin variables, making use of 
the fact that a Hermitian matrix of type (8) in the 
space of a sublevel with spin S can be constructed 
using polynomials in the spin components of degree 
::S 2S. 

3. CRYSTALS CONTAINING IONS OF RARE 
EARTH ELEMENTS 

In crystals of this type, the lattice vibrations, 
by modulating the crystalline field, can directly 
alter the direction of the magnetic moment of the 
rare earth ion, since the coupling between the spin 
and orbital moments of the electronic shell is 
stronger than the action of the electric field of 
the crystal. In contrast to (12), we must now in-
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elude 3CLS and Jess in JC0• The expression for 
the spin-phonon operator is gotten from (2) by 
replacing ~k by polynomials in the components 
of the total angular momentum J of degree !5 2J, 
which transform irreducibly under the operations 
of the group G. We shall not dwell on this since, 
if we express the relative displacements in (3) in 
terms of the components of the deformation ten­
sor, we arrive at the result obtained by Orbach.C1°J 
Calculations using formulas (6)-(8) in this case 
give the relation between the q~'$ and g~'$ and 
the constants in Orbach's phenomenological Ham­
iltonian.CtO] 
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