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In the presence of a magnetic field in a Fermi liquid, there exists a branch of the sp~ctrum 
corresponding to spin waves. The resonance absorption process leads to the excitation of 
spin waves. The damping of a spin wave with zero wave vector is connected with interac
tions leading to the nonconservation of spin and determines the transverse relaxation time. 
The longitudinal relaxation time is also found. 

1. INTRODUCTION 

THE investigation of the temperature dependence 
of the paramagnetic relaxation times in liquid He3 

has apparently been carried out only for T > 1 °K [ 1]. 

Under these conditions the influence of degeneracy 
is already small and the results can be qualitatively 
interpreted in terms of the classical theory [2]. 

It can now be considered established that for 
T < 0.1°K liquid He3 is a Fermi liql-!id, and hence 
the theory of paramagnetic relaxation, based on 
the classical description of the motion of the par
ticles, is inapplicable here. In the present work 
the microscopic theory of a Fermi liquid is used 
for the calculation of the paramagnetic relaxation. 

2. If the system is situated in a constant mag
netic field Hz and, in addition to that, a weak vari
able field H+ = Hx + iHy, then in the linear approx
imation with respect to H+ 

co 

M+(t) == Mx(t) + iMy(f) = 2~ ~ droe-iwt x1(ro)H+(ro). 
-co 

It follows from the equations of Bloch [3] that the 
"transverse" susceptibility Xt is 

(1) 

where x is the static susceptibility, w0 = {3Hz, and 
{3 is the gyromagnetic ratio of a free particle (a 
system of units with 1i = 1 is used). 

In a weak variable field Hz ( t ) 

co 

Mz (t) = 2k- ~ droxz (ro) Hz (ro) e-iwt, 
-co 

w- w0, the second for w- 0 ). For the trans
verse ( T 2 ) and longitudinal ( T 1 ) relaxation times 
one obtains the expressions 

T2 = af-tT-2 [1 + (roof2nT)2 ]-1 , 

Tl = Uft/T2 

(f.' is the chemical potential, T the temperature 

(3) 

(4) 

in energy units, 0' a constant of order of magni
tude ( J.La 3 I 132 ) 2 ~ 1014, and a the interatomic dis
tance ). Overhauser [4.] obtained an expression 
analogous to (4) considering the paramagnetic res
onance in metals within the framework of the free 
electron model. 

The times determined by (3) and (4) are very 
large: T1 ~ 106 -107 sec for T ~ 0.01°K. There
fore in this temperature region the observed relax
ation times will be determined by the experimental 
circumstances (interactions with the container 
walls etc.). Nevertheless the clarification of the 
paramagnetic resonance and relaxation mechanism 
in a Fermi liquid is of interest. 

We consider liquid He3 specifically, but the 
proposed approach is in principle also applicable 
to the investigation of paramagnetic resonance in 
metals. Paramagnetic relaxation is caused by very 
weak magnetic interactions among the particles, 
which are accompanied by much stronger interac-
tions of nonmagnetic nature. The latter alone can
not lead to relaxation by themselves but exert an 
essential influence on the mechanism of the proc
ess. 

As is well known the Fermi excitations play a 
fundamental role in the kinetics of a Fermi liquid. 

(2) In the presence of a magnetic field the energy spec
trum of the excitations has the form [li, 6] 

The formulae (1) and (2), as will be shown, fol
low from the microscopic theory (the first for 

1269 

e = v (p - Po) - r (a H), 
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where y is different from the gyromagnetic ratio 
of a free particle {3: 

(5) 

The constant Z represents the zeroth spherical 
harmonic of the exchange part of the dimensionless 
correlation function. In a Fermi liquid ( in contrast 
to a Fermi gas ) Z "' 1. Therefore excitation spin 
flip leads to an energy change yH ~ w0• Besides, 
the excitations have a very small lifetime com
pared to T1 and T2, which leads to a strong dif
fusion of the absorption band near the frequency 
yH. The resonance character of the frequency de
pendence of the magnetic susceptibility Xt is con
nected with spin waves, which, as will be shown, 
can arise in a Fermi liquid in the presence of a 
magnetic field. The spin waves have the disper
sion law w = w0 + bk2, where b "' v2/w0, and the 
damping for k - 0 goes to zero if one does not 
take magnetic interactions into account. 

2. TRANSVERSE RELAXATION TIME. SPIN 
WAVES 

1. For the transverse susceptibility x we can 
obtain the expression (see, for example, [7]) 

co 

Xt (w) = + \ dte'"'1 < IM+ (t), M_l) 8 (t), 
~ ' 

-00 

M (t) = exp [i.o/t'- M 2 H) t)Mexp[- i(Jt'- M 2 H)tl. (6) 

If we do not take the magnetic interactions into 
account, then [ JC, M] = 0, M+(t) = e-iwot M+ and 
thus 

( Wo 
Xt w) =X .ll; 

Wo-W-L 
fJ = +O. (7) 

To calculate T2 it is necessary to include in (6) 
the magnetic interactions leading to nonconserva
tion of spin. The basic interaction of this type in 
He3 is the magnetic dipole interaction between 
the nuclei 

V (r) = [32r- 3 (a a'- 3 ( ar) ( a'r)/r2 ]. 

In practice the explicit form of V( r) cannot be 
used, since in a Fermi liquid there exist strong 
nonmagnetic interactions leading to an essential 
"renormalization" of V. If one expands Xt in 
powers of V, then in each order there occur 
terms containing the factor ( w- w0 + io) - 1 to 
higher powers than in the lower order. For this 
reason, despite the fact that the interaction V is 
very weak, for w - w0 it is necessary to select 
and sum the main terms in all orders of pertur
bation theory. This series has in general a com
plica ted structure. We shall show, however, that 

it reduces to a geometrical progression in the 
case of a Fermi liquid. 

2. In the second quantization representation 

where aa,p is the annihilation operator of a par
ticle with the spin quantum numbers a = 1, 2; the 
average is taken over the grand canonical ensem
ble. 

As is well known, x< w) is analytic in the upper 
half-plane of the variable w. The application of 
the temperature diagram technique [SJ permits 
one to find this function at the points Wm = 27ml Ti 
(m integer). x(w) is then determined by means 
of analytic continuation from the point set Wm 

(m > 0) to the real axis. There exists the possi
bility of a direct graphical description of 
x(w ), as this was shown earlier for quantities of 
similar structure [9]. 

x(w) (without the factor {32/2) is represented 
by the set of all diagrams in Fig. 1. In this figure 
a pair of lines corresponds to 

g (P, w) = GR (P + w) GA (P); 

P ~ (e, p), P + w ~ (e + w, p); 

the quantity ff( P, P', w), connected with the ver
tex part [9, 10], is denoted by the circle, and each 
of the shaded corners represents the sum of all 
diagrams not containing intermediate intersec
tions of the type GRGA [we denote this quantity 
by Q( P, w )]. 

With the magnetic interaction V accounted for, 
the single particle Green's function G( P) is a 
spin matrix. However, we have to take V into 
account only in $". In this case, in accordance 
with (8), 

g (P, w) = g21 (P, w) = a: (P + w) at (P), 

and for Xt ( w ) one can write down the expression 

Xt(w) = --} ~2 {2i l~TC)• ~ d4PQ 2 (P, w) (the t/ - th 2~ )g21 

( 1 )" (' X (P, w) + 2i (2n:)• j d4Pd4P' Q 

xi(P, w) (th et/- th 2~)g21 (P, w) 

>5 ff 21,21 (P, P', w) g21 (P', w) Q (P', w)}. (9) * 
The factor tanh [( E +w )/2T] -tanh ( t/2T) is 

connected with the analytic continuation procedure 
[ 9]. The remaining quantities correspond directly 
to the elements of the diagrams in Fig. 1. 

*th =tanh. 
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2,P+w Z,P+w t,P'+w 

~~ 
I,P t,P I,P' 

FIG. 1 

Hence it follows that the integrals in (9) converge 
in the interval of values E, E', ~. e "' T, w. The 
quantity Q, which varies essentially only in the 
large interval of E, ~ "' JJ., can be removed from 
under the integral for zero values of these argu
ments. 

For small ~ and ~' functions ff ( P, P', w ) de
pends only on the angle between p and p'. Since 
the remaining quantities do not depend on the 
angles, the angle integration reduces to the sub
stitution for ff of its zeroth spherical harmonic, 
for which we retain the previous notation. The ~ 
dependence is thus contained only in g21, where 
Im 1: does not depend on ~. 

After integration over ~ we obtain 

-co 

1("" '( e+w e) 1 + 4 J~ de de th ----:z:r- - th ZT Q (e, w) 

Gr( I ) 1 }· x ::; e, e, w Q(e',w) , 

Q (e, w) = w- yH- ia lm [~R (e + w) + ~R (e)], 

(10) 

3. The quantity ff satisfies the equation (neg
lecting V) 

ff (e, e', w) = tf<o> (e, e', w) 

co 
1 (' d II ?,'(0) ( II ) 1 if ( II I ) +:r ~ eJi) e,e,W Q(e",w)"' e,e,w. (11) 

-00 

In this equation the integration over ~ and the 
angles has been carried out already. An equation 
of this type has been obtained and investigated be
fore [9, 10]. It has a clear cut graphical structure, 
since the quantity $<0> represents the set of all 
diagrams not having intermediate intersections 
GRGA. 

As was shownC10J, 

tf<o>(e, e', w) = -}c ( th "'2t w- th ;~)+iff' (e, e', w), 
(12) 

Clearly small values E"' ( T, w) « JJ. are essen
tial in the integrals. The quantity ff ( P, P', w ) has 
the property that for E "' T, w it vanishes exponen
tially as a function of E' outside the interval of 
values E'"' T,w. For small E and~ =v(p-p0 ) 

the quantity g21 ( P, w) can be written as: 

where 'if' = Im 'if<O>, and the constant C is the 
zeroth harmonic of the quantity C ( p, p' ) , which 
is connected in the following fashion with the k
limit of the forward scattering amplitude for 
T = 0 [ 11]: 

(a2p~/n2 u) fk (pa; p'a') = B (p, p') + (aa') C (p, p'). 

We introduce the notation cp ( E, E', w) 
= 'jf( E, E', w )/Q( E, w ). Then we obtain from (11), 
taking (12) into account, the equation for cp 

(w -'I( H) rp (e, e', w)= { C ( th e'2t w - th ;~ )+ iff' (e, e', w) 

+ fc~de" (th e";jw- th~~)rr (e", e', w) 

+ -f- ~de11tf' (e, e11
, w) rp (e11

, e', w) 

+ ia Im [.~R (e + w) + LR (e)] rp (e, e', w). (13) 

If both sides of this equation are multiplied by 
tanh[(E+w)/2T]- tanh(E/2T) and integrated 
over E, then the last two terms on the right side 
of (13) vanish, since 

i- ~de (th ";jw- th ;r)tf'(e, e', w) 

= -aIm [~R (e' + w) + ~R (e')l (the' ;i w- th 2~). 
(14) 

This relation implies the vanishing of the zeroth 
spherical harmonic of the collision integral. This 
as well as the analogous relation 

~~de' if' (e, e', w) = -aIm [~R (e + w) + LR (e)] 

(14a) 

can easily be verified if one makes use of the ex
plicit expressions for ff' and Im 1:, which have 
been obtained earlier [10]. 

Thus we find that 

~de ( th "-;/ - th ;T) rp (e, e', w) = 1 _4c14 ( th s' ;i w- th 2";) 

X w:::::.-~0 +ill ( f w - ia Im [LR (e' + w) + ~R (e')l). 

(15) 
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Here we took into account that 1- C/4 = ( 1 + Z/4 )-1, 

where z is related to rw: ( a2pV1r2v )rw = F 
+ (a. a') Z [H], and we used formula (5). 

Substituting (15) into the right hand side of (13) 
we see that for w - w0 the first two terms of the 
right hand side can be neglected. Near a resonance 
one can then look for a solution cp ( E, E', w ) in a 
form not containing any dependence on the first 
argument E. The last two terms in (13) then can
cel with the aid of relation (14a). As a result we 
obtain for ff( E, E', w) an expression which is valid 
for sufficiently small values of w- w0: 

exists a branch with l = 1, whose limiting fre
quency is different from w0• However, this branch 
practically does not appear in absorption since its 
contribution to Xt is proportional to (vk/w 0 )2 « 1. 

5. The presence of a pole in :If for w = w0 al
lows one to easily isolate the main terms in .an 
expansion of Xt in powers of the magnetic inter
action V. The problem of the calculation of T2 

reduces to the determination of the damping con
nected with V in the pole of :If. 

For the vertex part with inclusion of V(:if) one 
can write the equation 

ff (e e' ffi) = 2 (thE'+ wo- th _::_) Q (E, wo) Q (E', Wo) :f (e, e', ffi) = :1 (e, e', ffi) 
' ' (1 - Cj4)w0 2T 2T w- w0 + i6 

(Cffir/4 = ffio - rH). (16) + 2i (1n)• ~ d4P":Jf(e, e", ffi) KdP", ffi) 1f (e", e', ffi) 

The first term in (10) (not containing :If) has 
no resonance dependence on w. Therefore near 
a resonance 

a2p2 Q2 Wo 
Xt(ffi) = ~2 4n2~ 1-C/4 Wo-w-ib • 

A comparison with the exact formula (7) shows 
that 

(17) 

(18) 

(one can show independently that aQ = 1- C/4 and 
establish the identity of the formula obtained for x 
with the well known expression of the theory of 
Fermi liquids. [S,GJ) 

We considered the contribution to Xt ( w) of dia
containing at least one cross section of the 
type aRaA (Fig. 1). Diagrams not having such 
cross sections contain w along with variables 
whose range of variation in an integration is of 
the order of the quantity J.l.. Therefore such dia
grams can be omitted from consideration in an 
investigation of the frequency dependence of the 
magnetic susceptibility. 

4. Returning to formula (16) we see that :If has 
a pole at w = w0• This indicates that in the pres
ence of a magnetic field in a Fermi liquid there 
exists a Bose branch of the spectrum correspond
ing to spin waves L12]. We found only the limiting 
frequency of a spin wave for zero wave vector k. 

An investigation of the equation for :If for k >"' 0, 
which we shall not carry out here, shows that for 
vk « w0 the spectrum of spin waves is of the form 
w = w0 + bk2, where b"' v 2/w0• The damping of 
the spin waves goes to zero for k = 0 (not taking 
magnetic interactions into account). 

It is interesting to observe that besides this 
branch of the spectrum, corresponding to a pole 
of the zeroth spherical harmonic of :If, there also 

+ (- 1-)2 
\ d4P"d4P"'GT (e e" ffi) K (P" P"' ffi) 

2i (2n)4 j "' ' ' 2 • • 

x :f(e'",e',ffi), (19) 

where :If is defined by formula (16) [$' = (a 2p~/7T2v):Jr], 
and the quantities K1(P,w) and K2(P,P',w) con
taining V represent the sum of the diagrams shown 
in Fig. 2. In this figure the shaded circle is the 
correction to the self-energy (I;<V>); the rectangle 
is the correction to :r<0>(:J[{V) ). 

2,P .. w 2,P+w 

----®--
K,{P,w} + 

--®----f, p t,P 

2,P+w 2,P'+w 

Kz(P,P~w) - : .~: 
!,P I,P' 

FIG. 2 

We substitute into (19) the expressions corre
sponding to the diagrams: 

K1 (P, ffi) = g21(P, ffi) ro:(P + ffi) 1:)¥> (P + ffi) 

+ Gt (P) 1:~> (P)], 

K2 (P, P', ffi) = g 21 (P, ffi) :r<V> (P, P', ffi) g 21 (P', ffi) 

and carry out the integration over ~ = v ( p -Po) 
and ~' = v(p' -p0 ). Then, introducing the function 
f( w) by the formula 

1 2 ( E' + Wo E' ) 
:f (e, 8 ' ffi) = (1- C/4) Wo th ----zy--- th 2T 

X Q (e, ffi 0 ) Q (e', ffi 0) f (ffi), 

we obtain 
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f (ro) = 1/[ro- ro 0 - II (ro0)]. (20) 

The real part of II ( w0 ) determines a small 
correction to the resonance frequency and will not 
be considered further. The imaginary part is equal 
to 

lm II (roo) = 1-iC/4 2~o E de (the t/>o- th 2~) 

X aIm[~~> (e + ro 0) +~~>(e) 1 

+ -{-~~de de' (the!/"- th 2~} Im ffW> (e, e', ro)}. 

(21) 

In order to find the explicit form of the functions 
1m ~(V) and 1m %J(V) one can employ a method 
analogous to the one which was applied earlier [10] 

in an investigation of the collision integral. The 
diagrams of Figs. 3 and 4, where the circle rep
resents the correction to the vertex part linear in 
V, give the basic contribution to these quantities. 
The frequency dependence has to be considered 
only for the isolated lines. The calculations, which 
do not differ from the ones carried out in [10], lead 
to the following expression for 1m II ( w0 ): 

The formulae (22)-(24) lead to expression (3). 
We remark that exchange forces give no contribu
tion to B. Diagrams differing from the diagrams 
of Figs. 3 and 4 in that one of the vertices does 
not contain V likewise give no contribution to B. 
Thus B "' V2• In connection with this the question 
could arise whether along with the diagrams of 
Fig. 2 one has to consider also diagrams, some 
of which are shown in Fig. 5y where each shaded 
element is "'V. Calculations similar to the ones 
which led to (21) and (22) show that the summed 
contribution of such diagrams equals zero. 

P+w 

-:-! I t. P1+,_ 
___..:· WA: 

I,P I,P I,P' 

2,P•w 1 t,r+w 

~I 
t,P 1 I,P 

FIG. 5 

Im II (ro0) :=: - IIT2 = - Bcp (ro0)/(1 - C/4); (22) 3. LONGITUDINAL RELA.XA TION TIME 

(ro ) = n: sh (wo/2T) 
ljl 0 32Pov Wo 

= ~s :a: [1 + ( 2%~ )']' 
\dOP dOP {1 -(V) ~(V) 

B= j (4:rt)''ll(\e+el-e2\-1) 2 c,~.Y5rby.~· 

- 211~.1yr Y2. 132 + r 12. ysl sy. 12 
~(V) ~(V) ~(V) "i(V) } 

(fW>f<V> = fW> (p, P1; P2• P + P1 - P2) fW> 

(p + P1 - P2• P2; P1 p)). 

') 
~. 

~==lm[rvJ 
FIG. 3 

I,P 2,P'+w 

FIG. 4 

*sh = sinh, ch = cosh. 

(23)* 

(24) 

The "longitudinal" magnetic susceptibility is 
defined by the formula 

00 

r_1 (ro) = i ~ dte'"'1 ([Mz (t), Mzl> e (t). (25) 
-oo 

The diagrams entering into xz< w) can be split 
into two groups: diagrams not containing a single 
cross section aRaA and therefore not depending 
on w, and diagrams having such cross sections. 
For the contribution of the second group of dia
grams ( xz) one can obtain a formula analogous 
to formula (10) for Xt= 

Q0 {e, ro) = ro - ia Im [~R e + ro) + ~R(e) ]. (26) 

We show now that neglecting V we have ff 
"'(w + i<'))-1 as w- 0. Writing ff in the form 

we obtain that a'taffa[3,{3aapf3 = Y4ff2· 
For 1ff2 one can write an equation which differs 

from (11) by the replacement of ~HE, w) by 
n0( E, w ). This is connected with the fact that in 



1274 I. P. IPATOVA and G. M. ELIASHBERG 

contrast to xt in X1 both lines in the cross sec
tion GRGA have unique spin indices. Introducing 
the quantity q; 0( E, E', w) = ff2( E, E', w )/n0( E, w) 
we obtain for it the equation 

( , ) "GT'( ') + ro C \ d " h-2 e" ( " , ) rocp0 e, e , ro = t/i} e, e 16T .) e C 2T CJlo e , e , (!) 

+~~de" ff (e, e') cp0(e", e', ro) 

+ 2ia lm };R (e) cp0(e, e', ro), (27) 

where the constant C is the same as in formula (12). 
We are interested in values of w comparable 

to Tf1, i.e., w « Im}; ~ T2/JJ. and the more so 
w « T. This is taken into account in (27). As in 
the derivation of formula (15), one can obtain that 

ro (' d h-2 e ( , ) 2 1 h_2 e' Q ( ') 
2T .) e c 2T CJlo e, e ' ro = T 1 - C/4 c 2T 0 e ' 

Q 0 (e)= Q 0 (e, 0) = -2ia Im };R (e). (28) 

Substituting this expression into (27) we see that 
the solution can be sought in the form q; 0( E, E', w) 
= q; 1 ( E' )/ w not containing a dependence on the first 
argument E, since such a substitution reduces the 
last two terms of the right hand part of (27) to zero 
due to (14a). q; 1( E') is easily determined from 
(28). As a result we obtain the following expression 
for 'i2: 

Gf ( , ) 1 1 h-2 e' no (e)Qo (e') 
Gl 2 e, e ' (!) = 1 - C/4 T c 2T (J) + ib • (29) 

Thus $"2 ~ w- 1 as w - 0. We note that (29) is 
obtained from (16) by means of the limit w0 - 0. 
Therefore all following calculations connected with 
the consideration of V shall differ from those car
ried out in the preceding section only in that w0 

has to be taken equal to zero. Therefore the ex
pression for the vertex part including the damping 

will differ from (29) by the replacement of 
(w + io)-1 by (w + i/T1)-1, where T1 is defined 
by formula ( 4), which is obtained from (3) for w0 = 0. 
Substituting the expression for $" into (26) we 
find that xz = xw(w + i/T1)-1• Since in agreement 
with (25) the total susceptibility xz( w) without ac
count of V ( T 1 - oo) equals zero, the contribution 
of the diagrams not containing cross sections GRGA 
equals X· (This can also be verified directly. ) As 
a result we arrive at the formula (2) for xz ( w ) . 
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