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It is shown that cross sections for inelastic processes determined by the diffraction of fast 
particles by nuclei can be calculated on the basis of the diagram technique. "Vertex" func
tions are obtained which describe elastic diffraction scattering and which should be inserted 
in the diagrams for inelastic diffraction processes. Using the model of a ''black" spherical 
nucleus, the differential and total cross sections are calculated for the diffraction production 
of 1r mesons and strange particles as a result of the interaction of fast protons with nuclei, 
for the diffraction production of nucleon-antinucleon pairs in the collision of a fast 1r meson 
with a nucleus, and for the diffraction production of 1r-meson pairs by a high-energy y quan
tum. 

1. INTRODUCTION 

IN a number of papers [1- 3] a method has been de
veloped for the calculation of inelastic diffraction 
processes at high energies (bremsstrahlung, pro
duction by y quanta of 1r-meson and nucleon
antinucleon pairs, etc.) which are caused by the 
strong absorption of 1r mesons and nucleons in 
nuclei. The physical reason which makes it pos
sible to calculate cross sections for processes in
volving strongly interacting particles consists of 
the fact that the conservation laws require smaller 
and smaller transfers of momentum to the external 
body (nucleus ) as the energy of the incident par
ticle is increased. If the momentum transferred 
to the nucleus in the direction of motion of the in
cident particle is 

(1.1) 

( R is the nuclear radius), then the inelastic proc
esses occur at large distances from the nucleus, 
and the details of the strong interaction of 1r mes
ons and nucleons with the nucleus become unimpor
tant. Under such conditions the strong interaction 
of nucleons, 1r mesons, and strange particles with 
the nucleus can be described phenomenologically 
by using the formulas describing diffraction by a 
black sphere [1]. In order for us to be able to con
sider a nucleus as a black sphere with a sharp 
boundary, it is necessary that the reciprocal thick
ness of the effective absorbing layer of the nucleus 
should be large in comparison to the total trans
ferred momentum. This condition is fulfilled ifC4J 

where f..L is the 1r-meson mass, and q1 is the mo
mentum transferred to the nucleus in the perpen
dicular direction. Thus, under ultrarelativistic 
conditions it is sufficient to know the wave func
tions in the region of space r ~ R for an "exact" 
calculation of inelastic processes, if the particles 
produced emerge in a direction which differs little 
from the direction of the incident particle. The 
wave functions describing the particle diffracted 
by a black nucleus were obtained on the basis of 
Huygens' principle for particles having zero and 
non-zero spin [1,3] and have been generalized to 
the case of a semi-transparent nucleusC5J, and 
also to the case of a nonspherical nucleus [s, 7J 
(when the excitation of the low-lying rotational 
levels of the nucleus plays an essential role ) . 

In Sec. 2 we shall obtain with the aid of such 
"exact" wave functions operators corresponding 
to elastic diffraction scattering, which must be 
inserted in diagrams describing inelastic diffrac
tion processes involving small transfers of momen
tum. 

In Sees. 3-6 explicit calculations are carried 
out of cross sections for processes of the follow
ing types 

r + A __, :n: + + :n:- + A, 
p +A __, n + n+ +A, 

p + A --+ K+ + A (~0) + A , 

n- + A __, n + p + A. 

2. DIAGRAM TECHNIQUE 

(1.3) 
(1.4) 
(1.5) 
(1.6) 

We consider the elastic scattering of spinless 
(1.2) particles ( 1r mesons ) by a black spherical nucleus 

1222 



INELASTIC DIFFRACTION PROCESSES AT HIGH ENERGIES 1223 

under ultrarelativistic conditions involving small 
momentum transfers qll ;:;. 1/R (diffraction scat
tering of 11' mesons by nuclei). We shall describe 
the process under discussion by the diagram of 
Fig. 1a (we omit the line corresponding to the 
nucleus, since for small momentum transfers the 
~ucleus may be treated in the static approximation), 

.On,(p.q,) 11,'\Jp.q,) 

-p---D--p;- ---pD---y-
a b 

FIG. 1 

where D7r( p, q) is the vertex function representing 
the matrix element for the diffraction scattering of 
a 11' meson by a nucleus without normalizing factors, 
p is the momentum of the incident particle, and q 
is the momentum transferred to the nucleus. The 
vertex function D7r( p, q) can be easily determined 
by comparing the scattering amplitude f7r(p, q), 
evaluated with the aid of the "exact" wave function 
of the diffracted particle, with the amplitude ob
tained from the diagram of Fig. 1a: 

D" (p, q) = 2[p[ J" (q, Rn), 

J" (q, Rn) = ~ e'qp (1 - Q, (p)) dp. (2,1) 

In the case of scattering by a "black" spherical 
nucleus 

Q ( ) _ { 1, p > R" 
" p - o, p < R" ' P j_ p, 

2:n:R" ( ) J" (q, R") = -k-JI(kR"), 2.2 

where k is the transverse component of the trans
ferred momentum, R7r is the nuclear radius with 
respect to the absorption of 11' mesons, and J 1 ( x) 
is a Bessel function of the first order. 

We note that under the conditions under discus
sion the energy of the incident rr meson is con
served at the diffraction vertex, since the energy 
transferred to the nucleus .D.En >:0 q2/2Mn turns 
out to be very small. In the case of diffraction 
scattering of a rr meson by a "black" nucleus 
having the shape of an ellipsoid of revolution in
volving the excitation of a rotational level the func
tion J 1(x) in (2.2) is replaced by the function 
Jno< ka, z) introduced by Drozdov [S] ( cf. also [?]). 

In the case of diffraction by a semi-transparent 
nucleus the function flrr( p ) has the form 

{ { R." l 
[ exp~- \ Vr'-p2 Bir)dr}, P<R~ 

Q, (p) = ~ t ~ J ' 
I , t 1, p > R, 

where R~ .<, Rrr, B( r) is the complex absorption 

coefficient for the nucleus ( cf., for example [BJ). 

In the most general case of the interaction of a rr 
meson with a nucleus the function Drr( p, q) can be 
determined from experiment. 

In a similar manner we can find the vertex func
tion DN( p, q) for the diffraction scattering of nu
cleons by nuclei (Fig. 1b). With the aid of the 
"exact" wave function for spinor particles the 
scattering amplitude can be written in the form 
( ii and u are bispinors ) 

E _, 
{N (p, q) =- 2i1 (up' (yn) up) J N (q, RN); 

E = Y p2 +m2 , utup = I. 

Comparing this with the amplitude evaluated in 
accordance with the diagram of Fig. 1b we obtain 

DN (p, q) =- i (yn) JN (q, RN), n =pip, 

J N (q, RN) = ) e'qp (1 - QN (p)) dp, p j_ p. (2.3) 

For a ''black" spherical nucleus we have 

{
1, P>RN 

2:rtRN 
QN (p) = ' J N (q, RN) = -k- Jl (kRN), 

0, P < RN (2.4) 

where RN is the nuclear radius with respect to 
nucleon absorption, y are the Dirac matrices 
( y = - i{3a). The vertex function DN( p, q) in the 
case of diffraction by a semi-transparent nucleus, 
a nonspherical nucleus, etc., can be obtained in 
the same way as in the case of diffraction of a rr 
meson by a nucleus. 

With the aid of the vertex functions Drr( p, q) 
and DN(p, q) the matrix elements for the inelas
tic diffraction processes of the type of brems
strahlung, or of pair production in the field of the 
nucleus, can be calculated on the basis of the usual 
diagram technique. In this case the momentum p 
should be interpreted as the momentum of a real 
particle. We also note that the Coulomb interaction 
of charged particles with a nucleus can be taken 
into account in the method proposed here by means 
of the usual diagram technique [5]. 

3. DIFFRACTION PRODUCTION OF PION PAIRS 
BY A GAMMA QUANTUM 

In connection with the possibility of obtaining 
narrowly collimated rr-meson beams with the aid 
of electron accelerators it is of particular interest 
to investigate the process of diffraction production 
of rr-meson pairs as a result of the interaction of 
a high-energy y quantum with a nucleus (1.3). 
From the conservation laws it follows that condi
tion (1.3) is satisfied for a y-quantum energy of 
w .<, 2tJ.A1/ 3 (for A= 125, w .<, 1.4 BeV), where A 
is the atomic mass number. Diagrams correspond-
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a b 

FIG. r2 

c 

ing to the production of 1r-meson pairs by a y quan
tum are shown in Fig. 2. 

On the basis of these diagrams the matrix ele
ment for the production of a 1r-meson pair by a 
black spherical nucleus can be written in the 
form i) 

T = s y<X n;'!, { ip2R,/1 (gR") (jp1) 

V2E1E2w g[(PI-P)2 -p~] 

ip1R"h (gR") OP2l 

g [(p- P2l2 - P~] 

(3.1) 

Here E - 0; Pi 1 Pi; p2 1 p2; Pi• p2 < R7r; w is the 
energy of the y quantum; p is the momentum of 
the y quantum; Pi• p2 are the momenta of the 1r 
mesons; g is the momentum transferred to the 
nucleus in the direction perpendicular to p; Ei, E2 

are the energies of the 1r mesons. 
In (3.1) we have set for the electric form fac

tors F = 1. In the case of heavy nuclei ( J..LR1r » 1) 
the differential cross section for the process aver
aged over the polarizations has the form 2> 

d ( b E ) - a. R~ Ji (gR") £1 (w-Et) 2 ( ) 
a g, ' 1 - 2n:2 7 w• (t-t• + b2) 2 b dbdg, 3.2 

where b = E292 ( 92 is the angle of emission of one 
of the 1r mesons, e~ « J,.t2/E~). In the derivation of 
(3.2) it was taken into account that Ei, E2, w » J..t 

and geff ~ 1/R « J..t. On integrating the cross sec
tion (3.2) with respect to g between the limits 
0 s g s oo (because of good convergence) we ob
tain Drell's result [9] apart from the notation 
(Drell evaluated the cross section for the produc
tion of a 1r meson in the collision of a y quantum 
with a nucleus on the basis of the diagram of Fig. 3 ), 
if we assume that at the vertex r elastic diffrac-

FIG. 3 

llThe metric is ab ~ a•b - aobo. 
2lThe result (3.2) was first obtained by PomeranchukJ2 ] 

tion scattering of a 1r meson by a nucleus occurs 
with total cross section 1rR~. It should be noted 
that the result (3.2) was obtained, in contrast to 
Drell's calculations, on the basis of the three dia
grams of Fig. 2. Of particular interest is the fact 
that the diagram of Fig. 2c, where both newly cre
ated 1r mesons are diffracted by the nucleus, gives 
a contribution of the same order of magnitude as 
the diagrams of Fig. 2a and Fig. 2b where only one 
of the 1r mesons is diffracted. 

4. DIFFRACTION PRODUCTION OF PIONS UPON 
SCATTERING OF A FAST NUCLEON BY A 
NUCLEUS 

We consider the process of the diffraction pro
duction of a 1r meson in the collision of a fast nu
cleon with a nucleus (1.4) [4, iO]. The energy thresh
old for this process when the inequality (1.1) is sat
isfied can be obtained from the condition 

- (Pl + P2) 2 = - (p- q) 2 ;> (m + f1) 2 , (4.1) 

where p = ( E, p) is the four-momentum of the in
cident nucleon, Pi= ( Ei, Pi) is the four-momen
tum of the nucleon after the interaction, p2 = ( E2, p2 ) 

is the four-momentum of the created 1r meson, q is 
the four-momentum transferred to the nucleus, and 
m is the nucleon mass. Going over on the left 
hand side of the inequality (4.1) to the laboratory 
system of coordinates (l.s. ), we have 

m2 - q2 - 2Eq0 + 2pq 11 > m2 + 2mfl + f12• (4.2) 

Since q0 ~ q2 /2Mn ( Mn is the nuclear mass) and 
the recoil energy of the nucleus can be neglected 
under the conditions (1.1) and (1.2), then from ex
pression (4.2) we can easily determine the energy 
threshold for the reaction (1.4): 

Ethr )': (2mf1 + f12)/2Qumax = mflR. (4.3) 

For a nucleus containing A = 125 nucleons, condi
tion (1.5) is satisfied already at energies Ethr ~ 5 
BeV, which are quite easily attainable with modern 
accelerators. 

We now proceed to the direct calculation of the 
cross section for the diffraction production of 1r 
mesons on the basis of the simplest diagrams of 
Fig. 4 where the interaction of 1r mesons and nu
cleons with the nucleus is taken into account ex
actly in the sense indicated above. We treat the 
1rN vertex as an exact one by means of introducing 
the pion-nucleon form factor gy5F (- gL - g~. - g~) 
( gi is the four-momentum of the meson, g2, g3 are 
the four-momenta of the nucleon before and after 
the interaction), which is equal to gy5 on the mass 
shell when all the particles are physical. We neg-
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FIG. 4 

lect the contribution from diagrams of the type 
shown in Fig. 5 since they contain weakly interfer
ing diffraction vertices of the incident and the cre
ated particles [5]. The approximation which we 
are utilizing takes into account the large class of 
diagrams of the type of Fig. 6. However, we can
not estimate the contribution from diagrams con
taining the "enveloping" 1r-meson lines ( cf., Fig. 7 ) . 
and their role remains unclear. In view of the 
aforementioned difficulties which are generally 
characteristic of modern theory, the estimates 
for the cross sections for the diffraction produc
tion of particles at high energies should be taken 
as correct only in order of magnitude. 

Thus, in the approximations indicated earlier 
the matrix element for the reaction (1.4) can be 
written in the form 

- 4rr,'log - {'" [i (p- q) r -"(4£- m] (vn) RNJl (kRN) 

r- vi; up, (Pl + P•)•- p• k 

+ 2irsP•R.,,Jl(kRn) F (- (p _ p1)2, m2, m2) 
k [(P-Pt)2 - P~] 

ip2 (' (i (P+ f)r -r4Et-m]rsF (-f2,- (p + f)•, m•) 
+sJt4~(ynl) (p+f)•-pi-i8 f2-p;-i8 

(4.4) 

Here E and p are the energy and the momentum 
of the incident nucleon, E1 and p1 are the energy 

FIG. 5 

FIG. 6 

FIG. 7 

and the momentum of the nucleon after the reac
tion; E2 and p2 are the energy and the momentum 
of the created 1r-meson; q is the momentum trans
ferred to the nucleus; k = - <u; RN and R1r are 
the nuclear radii with respect to the absorption of 
a nucleon or a 1r-meson; g2 = 14.5 is the coupling 
constant for the 1rN interaction; iip1 and Up are 
bispinors describing respectively the final and the 
initial nucleon states, y, y4, y5, are Dirac matrices. 
In the case of the creation of a neutral meson the 
matrix element (4.4) is smaller by a factor 21/ 2• 

The diffraction mechanism for the production of 
7T mesons is realized at high energies E, E1 » m, 
E2 » ~-'• for small angles of emission of nucleons 
and of 1r mesons. Under ultrarelativistic condi
tions expression (4.4) is significantly simplified. 
The integral in the curly brackets can be calcu
lated in the case of heavy nuclei J..'R » 1 in the 
same manner as was done in Pomeranchuk's [2] 

paper. In carrying out the integration we assumed 
that the form factor has no singularities in the up
per complex half-plane of the variable £11 = (fp)p/p2• 

On introducing the notation 

p1 = p1n (1 - kil2pi) + k1, k1 _l p, k1 ~ P1• 

p2 = p2n (1 - k:12p:) + k2, k2 _l p, k2 ~ P2• (4.5) 

and on neglecting terms of order m2/E~ and !-' 2/E~ 
compared to the main terms, and on taking RN 
= R7r = R we obtain 

T - SiJt'l•gRlt (kR) EtE• u { [ 1- zk (Vnt) (yk) J !sF (fl•, - g~, m•) 

- ~~E p, l • 2 'E kE r 2 m £ 2 ~-l-k2 
£2 + E 2 

( 1 - __..!:___ (yn1} (Vkt)) rsF (- g~2 , m•, m•) ) 
4£1 u . ___c_______::~-~--'--~---- ~ p· 

m2£~ f12£1 1 2 J 
·- j_ --+-(k1- k.) 

£• ' E 4 

(4.6) 

-g~ = - (m2E;- ki£2)/EEl, 

_ g~2 = [ _ E~m2 _ +£2 (k1 - k2) 2] !EE 1, 
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- g~ = (£1£2m2 -£2k~)/££2, 

-gi = [m2EE2 + 112££1 + (k1£2-k2£1)21 /£1£2·· 

In deriving formula (4.6) we took into account the 
fact that q 11 « q1 = k in accordance with conditions 
(1.1) and (1.2). It follows from (4.6) that the effec
tive quantities are k1 "' k2 "' mE2 /E, if E2 .<: t.tE/m, 
or k1 "' k2 "' t.t( E1 /E) 1/ 2 "' t.t. if E2 ~ t.tE/m. The 
quantities k1 and k2 are simply related to the 
angles of emission of rr mesons and nucleons: k1 

= E101, k2 =E202, and for E2 » t.tE/m the rr mes
ons are emitted at angles 0 2 < m/E, while nucle
ons are emitted at angles 01 :s mEdEE1. The 
form factors F (- g~. - g~, - g~) in front of the 
various terms in the curly brackets of expression 
(4.6) differ in magnitude since they depend on dif
ferent variables. We now evaluate the amounts by 
which the variables of the form factors differ from 
their values on the mass shell (for E2 » t.tE/m): 

- g~- m2 =-£2m2/£, 6~ < m2!£2, 

- gi- m2 = m2E21EH (62 - 61)2 < m21£i, 

- gi- 112 =- m2E~/EE1 , 6i < m2£~/£2£i, 

- g~2 - 112 =- m2E~/EEH ~ (62 - 61£/£2)2 < m2/£2. 
(4. 7) 

It can be seen from (4. 7) that the arguments of 
the form factors differ considerably from the 
squares of the masses and, consequently, that the 
form factors themselves must differ appreciably 
from unity. However, in order to obtain at least 
a rough estimate of the magnitude of the effect, 
we shall assume that the numerical values of the 
form factors appearing in (4.6) are the same and 
of order of magnitude unity. For E2 .<: t.tE/m the 
ratio k/k2 « 1 (keff"' 1/R). Therefore, in (4.6) 
we carry out an expansion in powers of k/k2 keep
ing only the principal terms: 

T 8rr,'l•igRJ1 (kR) £1£2 - (kk2) (1 - 2£2/ E) - u r u 
- kE V £2 p, 5 P (E~m2/E2 + k~)2 

(4.8) 

It follows from expression (4.8) that in the first 
approximation of perturbation theory in terms of 
the strong interaction a strong cancellation occurs 
between contributions of diagrams of Fig. 4. The 
matrix element (4. 8) turns out to be of order t.tlm 
in comparison with the matrix elements obtained 
on the basis of each of the diagrams of Fig. 4. The 
existence of this cancellation indicates the impor
tant role played by the polar single nucleon dia
grams of Fig. 4a, b and by the diagram of Fig. 4d. 
Such a result contradicts Drell's conclusions [U] 

that polar single nucleon diagrams are unimportant 
for the diffraction mechanism for the production of 
rr mesons. We should note that Drell's conclusions 

refer to the diffraction production of rr mesons by 
nuclei which can no longer be regarded as station
ary. Nevertheless, the existence of this cancella
tion is a very important fact pointing to the lack of 
justification for neglecting the polar single nucleon 
diagrams. Taking into account the departure from 
spherical shape and the semi-transparency of the 
nucleus does not eliminate the cancellation. How
ever, the cancellation must be partially destroyed 
by taking the rrN vertex into account exactly by 
means of form factors, and by taking into account 
the fact that the cross sections for the interaction 
of rr mesons and of nucleons with nuclei are dif
ferent (RN = Rrr>· In view of what we have just 
said formula (4.8) and all subsequent estimates 
can be considered valid only in order of magnitude. 
The cross section for the production of rr mesons 
is related to the matrix element by the formula 

dcr =\IT \2 2rr.6 (£ - E - E ) !}_ d3Pl!f'Pz (4.9) 
.\ 1 2 p (2rr.)" . 

On carrying out the integration with respect to E1 
in (4.9) and on replacing the variables 01 = kdE1, 

02 = k2 /E2, k1 = k- k2, we obtain with the aid of 
(4.8) 

2g•R•Ji (kR) ~- 2 (kk•)• (1- 2Ez!E)• E~E• d£.d3k2dak. 
da = Up,YsUp I 

rr,2k• (E~m2f£2 + k~)4 £ 2 ( 4•10) 

On averaging over the initial spin states of the nu
cleon and summing over the final ones in (4.10) we 
obtain 

(4.11) 

where E = EdE. On integrating (4.11) over the 
angles and over k between the limits 0 :s k :s t.t 
[ cf. (1.2)], we obtain 

(4.12) 

In view of the rapid convergence the integration 
over k2 can be carried out between the limits 
0 < k2 < co. As a result of this the energy spectrum 
of fast rr mesons ( E > t.tlm) can be expressed by 
the formula 

d - gz[lz R (1- 2e)• d 
a - 4rr.m2 it--e- e. (4.13) 

On carrying out the integration over E between the 
limits p./m :s E :s 1 we obtain an estimate for the 
total cross section for the production of fast rr 
mesons at small angles 02 :s m/E: 

cr = (0.7g2R/4rr.l1) (11/m)2 = 1.5 mb for A = 125. (4.14) 

It can be seen from (4.14) that the cross section 
for the diffraction production of rr mesons at high 
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energies is proportional to the nuclear radius and 
does not depend on the energy. The result (4.14) 
agrees with the qualitative estimates made by 
Pomeranchuk and Fe1nbergC4J. Thus, even in the 
presence of strong cancellation in the diagrams 
the cross section for the process (1.4) attains an 
appreciable value. Experimental measurement of 
the differential cross section could in principle 
yield information on the value of the pion-nucleon 
form factor. However, as can be seen from (4.6), 
this is a very difficult problem since the differen
tial cross section depends on the values of the form 
factor at three different points with respect to dif
ferent variables. 

5. THE DIFFRACTION PRODUCTION OF STRANGE 
PARTICLES UPON SCATTERING OF A FAST 
NUCLEON BY A NUCLEUS 

We now consider briefly the processes of the 
diffraction production of strange particles in the 
interaction of a fast nucleon with a nucleus. The 
energy threshold for such processes when condi
tion (1.1) is fulfilled is evaluated in the same man
ner as in Sec. 4. 

For the process (1.5) we obtain 

Ethr~[(mA +mK)2 -m2 ]/2qnmax 

~ + [(mA + mK)2 - m2] R. (5.1) 

In the case of a nucleus of mass number A = 125 
we have Ethr ~ 30 BeV. The matrix element for 
the process (1.5) can be easily obtained on the 
basis of the diagrams of Fig. 4 with small changes 
associated with the nature of the KNA vertex and 
with the masses of the particles: 

_ 4n'/,gKA!!_- {f[i(p-q)y-r4E-m](vn)RNJ.(kRN) 
T- V2£~ Up, (Pt + Pz)•- p2 k 

X <D (mk, m~,- (Pt + P2)2) 

(vnt) [i (Pt + q) V- '1.£1- m Alf RA h (kR11) 

+ (p - P•)' - Pi k 

X rD ( 2 _ ( _ )2 2) + 2ifp, RK h (kR) 
mK' p P2 ' m ( )• 2 k P-Pt -p2 

I <D ( ( )2 2 2) ..L ip2 (' ( ) X, - P- Pt 'mA, m , sn• ~ ynl 

X [i(p+g)v-r.Et-mA]f !D(-g•, -(p+g)•,m•) 

(p + g)2 - Pi- ie g2 - p~- ie 

X ei(p+g)p,e-igp, dp1 dp 2d3g} up; (5.2) 

e __. 0, Pt_lPt• P2_Lp2, n1 = PtfPt• n =pip, 

ri< R~, p~ <; Rk, k=-q_L. 

Here E and p are the energy and the momentum 

of the incident nucleon, E1 and p1 are the energy 
and the momentum of the A hyperon, E2 and p2 
are the energy and the momenum of the K meson; 
RN, RA, RK are the nuclear radii with respect to 
the absorption respectively of nucleons, A hyper
ons, and K mesons, gKAN is the coupling con
stant for the KAN coupling; r == 1 if the KAN 
coupling is scalar, and r = y 5 if the KAN coupling 
is pseudoscalar; <I> (- gi, - g~, - g~) is the vertex 
function for the KAN-vertex. If RN = RA = RK = R 
and all the form factors <I> ~ 1, then the expression 
(5.2) is very much simplified. The integral con
tained in the curly brackets of formula (5.2) can 
be evaluated in the case of a heavy nucleus [2]. On 

introducing the notation 

P1 = Ptn (1 - ki/2pi) + k1, k1 < P1• k1_Lp, 

P2 = P2n ( 1 - k~/2p~) + k2, k2 < P2• kd_P 

and on going to the limit E » m, E1 » mA, E2 

(5.3) 

» mK (mA is the mass of the A hyperon, mK is 
the mass of the K meson), we obtain 

8n'/, igKIINRh (kR) £1£2 
T=--_c_---=-==---

kE V2E, 

_ ( r l1 + 2~ (rk) (rn) J 
X u J - --,-,---------,;;-;o;---'=----r;----,-,-~-.---r;-;-.,----

P• ) § 2 £1£2 2 £1 2 (k1£2- k,Et)a t E rnA- £ 2 m + E mK + £2 

~ 1 J l1 - 2£ 1 (rnt) (rk) r 

On taking into account the fact that effectively 
k1 ~ k2 ~ m and k1 ~ - k2 for E1 ~ E2, while 

(5.4) 

keff ~ 1/R, we can carry out an expansion in 
formula (5.4) in powers of k/k2 keeping only the 
term linear in k. After some straightforward 
calculations the matrix element assumes the com
paratively simple form: 

(kk2) ( 1 - 2£,/ E) (5.5) 

The cross section for the process is related to the 
matrix element by means of formula (4.9). On sub-
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stituting (5.5) into (4.9) and on carrying out the in
tegration with respect to the energy of the A hy
peron E1 we obtain 

6. THE DIFFRACTION PRODUCTION OF 
NUCLEON-ANTINUCLEON PAIRS BY A 
FAST PION 

X (kk2)2 (1- 2£2/£)2 d£2 dkdk2 

[Ezm~!E- E1E2m2/E' + E1m7<!E+k~]4 

We consider the production of nucleon-anti
nucleon pairs accompanying the diffraction of fast 
rr mesons by nuclei. The energy threshold for pair 

(5.6) production under the condition (1.1) is determined 
in the same way as in section 4: 

On averaging over the initial spin states of the 
nucleon, and on summing over the final spin states 
of the A hyperon we obtain from (5.6) 

where the index P (upper sign) corresponds to 
pseudoscalar KAN coupling, while the index S 
(lower sign) corresponds to scalar coupling. On 
carrying out the integration over the azimuthal 
angles of the vectors k and k2 and over the abso-
lute value k between the limits from 0 to f.J. [ cf. 
(1.2)], we obtain the energy and the angular spec
tra of the K mesons: 

2 Rf1 
dcrp,s = gpz~ [k~ + (mA =F (1 --e) m)2l 

e (1 - 2e)2 dek~ dk 2 

X ~~----------~~----~ 
[m~e- m2e (1- e)+ mk (1- e)+k~]4 • 

(5.8) 

Here E = E2 /E, while k2 is simply related to the 
angle of emission of the K-meson: 82 = k2 /E2• 

The integration over k2 can be carried out be
tween the limits from 0 to oo in view of the good 
convergence. The energy spectrum of the K mes
ons then has the form 

(rnA+ (1-e) m)2 J 
2(mk + e (mi- m2 -m7<) + e•m2) 

X e(1-2e)2 de 

[mk + e (m~- m2 - mk) + e•mz] 
(5.9) 

We note that in comparing formulas (5.8) and (5.9) 
with experimental data we can, in principle, obtain 
information on the relative KA parity and on the 
coupling constant for KAN coupling. Naturally, 
an important role in this can be played by the form 
factors introduced in (5.2) which we have set equal 
to unity. If the form factors differ appreciably 
from unity in the range of energies and angles 
considered by us, then the analysis with respect 
to parity and the derivation of the form factors 
themselves from experimental data becomes in 
practice a very complicated problem. If we as
sume that gp ~ 10, then the total cross section 
for the production of K-mesons is up ~ 0.5 mb. 

(6.1) 

For a nucleus of mass number A= 125 we have 
Ethr ~ 60 BeV. The matrix element for the proc
cess (1.6) can be calculated on the basis of the dia
grams of Fig. 8 and has the form 

x {[1- (:~)~~~:2£1] Ts p (fl2, _ (p _ p2)2,m2) 

+ [1- (T:~ ~n;:2£2] Ts p ( fl2, m2, _ (p _ p1)2) 

TsF (- (p1 + P2l2, m", m2) 

m2 + E-2 (k1E2- k2E1)2 

[1- (Tnl) (jk)/4Et- (Tk)(rnz)/4£2] is 
m2 + (k1- k2)2/4 

x F (fl2, -gi, m2) }v-p,; 

n1 = P1IP1• n2 = P2IP2• k = k1 + k2, 

P1 = P1n (1 - ki/2pi) + k1, k1 ~ P1• 

n =pip, 

kd_p, 

k2_lp, 
(6.2) 

where E, p is the energy and the momentum of the 
rr meson, E1, p1 and E2, p2 are the energy and the 
momentum of the nucleon and the antinucleon, iip1 
and v -p2 are bispinors describing the spin states 
of the nucleon and the antinucleon, g2 = 14.5, and 
m is the nucleon mass. In the derivation of for
mula (6.2) we assume that E, E1, E2 » m, Rrr = RN 
= R:N = R. The quantities k1 and k2 are simply re
lated to the angles of emission of the nucleon and 
the antinucleon: k1 = E181, k2 = E282• 

We shall calculate the amount by which the vari
ables of the form factors in formula (6.2) differ 
from their values on the mass shell: 

- (p- p 1) 2 - m2 =- Em21Ev ei ~ m21E~, 

- (p1 + P2)2 - !-t2 = m2PIE1E2, (61- 62)2 ~ m2E21EiE~, 

- gi -m2 =- Em2IE2, _i-(62- £ 161/£2) 2 ~ m21E~. (6.3) 

From this it can be seen that the arguments of the 
form factors differ appreciably from the squares 
of the masses and, consequently, the values of the 
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FIG. 8 

form factors can differ appreciably from unity. 
Thus, on comparing the differential cross section 
calculated with the aid of formula (6.2) with the ex
perimental value we can obtain, in principle, infor
mation on the pion-nucleon form factor. In order . 
to obtain at least a rough estimate of the magnitude 
of the effect we shall assume that the form factors 
differ but little from their value on the mass shell, 
i.e., all F ::;:, 1. 

It follows from (6.2) that on integrating the dif
ferential cross section over the angles the princi
pal role is played by k1 ::;:, - k2 and kt "' k2 "' m. 
Under such conditions the expression (6.2) for the 
matrix element can be expanded in powers of k/k2 

( keff "' 1/R). Keeping only the term linear in k 
we obtain 

T _ . 8n'l•gRE1E2J1 (kR)- (kk2) (1- 2£2/E) 
- l 'I Up, y a V -p, -'--"'--'----::-'"---' 

kE ' (m2 + k~)2 (6.4) 

In this expression we also have the diagram can
cellation noted in Sec. 4. The differential cross 
section for the diffraction production of nucleon
antinucleon pairs calculated with the aid of the 
matrix element (6.4) has the form 

On summing over the spin states of the nucleon 
and the antinucleon, and on integrating over the 
angles we obtain 

where E = E 2/E. The integration over k should be 
carried out between the limits from 0 to J-1 [ cf. 
(1.2)], as a result of which we obtain the energy 
and the angular distributions of the antinucleons: 

da = (2g2 R!J./n) k~ dk2 (k~ + m2}-3 (l-2e)2 de. (6. 7) 

From this it follows that the effective angles of 
emission of the antinucleon 82 eff :s m/E2• In view 
of the good convergence the integration over k2 

can be carried out from 0 to oo. Then the energy 
spectrum of the antinucleons has the form 

On carrying out the integration over E from 0 to 1 
we obtain an estimate for the total cross section 

for the diffraction production of nucleon -antinu
cleon pairs by a rr meson: 

(6.9) 

For a nucleus of mass number A = 125 we have 
u::;:, 1. 7 mb. Formula (6.9) has the linear depend
ence on the nuclear radius R characteristic of 
inelastic diffraction processes, and does not de
pend on the energy. 

7. CONCLUSION 

The estimates of the differential and total cross 
sections for the diffraction production of particles 
in the interaction between nucleons, y quanta and 
rr mesons with nuclei given above show that the 
diffraction mechanism can play a significant role 
at high energies. The product particles carry 
away practically the whole energy of the primary 
particle, and are emitted within a narrow angular 
range. This fact is very important for obtaining 
narrow beams of rr mesons and of strange par
ticles of high energy utilizing proton and electron 
accelerators. 

From the theoretical point of view of greatest 
interest is the effect of cancellation in first-order 
perturbation theory of pole diagrams containing 
nucleon and rr-meson virtual lines. This result, 
obtained for the case of diffraction by nuclei, does 
not agree with Drell's conclusions [U] that polar 
single nucleon diagrams are unimportant for dif
fraction processes in nucleon-nucleon interactions. 
The possibility is not excluded that the cancella
tion noted by us is of a general nature within the 
framework of perturbation theory. A more con
sistent method of taking into account strong inter
actions between rr mesons and nucleons by means 
of introducing form factors must partially destroy 
this cancellation, since the arguments of the form 
factors can differ appreciably from their values 
on the mass shell. 

The authors express their gratitude to I. Ya. 
Pomeranchuk for suggesting the problem and for 
many fruitful discussions, and also to the partici
pants in the theoretical seminar of the Moscow 
Engineering-Physics Institute for a number of 
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