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Formulas for the elastic scattering cross section of electrons by nuclei have been derived 
by taking into account screening and the finite size of the nucleus. The Laplace transforma­
tion for the scattering charge density and expansion of the matrix elements in the transfor­
mation parameter were employed. 

1. INTRODUCTION 

THE exact determination of the amplitude of rela­
tivistic scattering of charged particles by a dis­
tributed charge is a complicated computational 
problem. In this connection, the development of 
approximate methods for calculation of scattering 
cross sections is very useful. One of these meth­
ods is the method of the Born approximation. This 
method has been applied not only for the calculation 
of scattering cross sections with account of screen­
ing,[!] but also for obtaining the cross sections for 
scattering by the distributed charge of the nucleus. 
[ 2, 3] However, the comparatively poor converg­
ence of the Born theories on the one hand, and the 
difficulty of calculation of higher Born approxima­
tions on the other, have reduced the value of the 
method. Moreover, all calculations by this method 
have always been connected with the choice of defi­
nite models of the charge distribution. 

In the present research, which is a continuation 
of the previous work of the author [4] (cited below 
as I), the potential created by the atomic shell and 
by the deviation of the charge distribution of the 
nucleus from that of a point charge is taken into 
account as a perturbation. The generalized func­
tions of Furry-Sommerfeld-Maue in the Coulomb 
field of the nucleus were used as the unperturbed 
wave functions [I, (6)]. Application of the Laplace 
transformation for the density of the nucleus and 
of the electron shell of the atom makes it possible 
to separate the additional small parameter. In the 
expansion in this parameter, the scattering cross 
section is expressed in terms of the mean value 
of the determined characteristics of the charge 
distribution without reference to concrete models. 

2. GENERAL FORM OF THE SCATTERING 
CROSS SECTION 

Consider a charge Z isotropically distributed 
in space with density p ( r). Applying the Laplace 
transformation, we get 

00 

rp (r) = 4~ ~ X (A.) t.,2e-1cr dA.. (1) 

The form factor F(q) of the given charge distri­
bution p ( r) in this case takes the form 

00 

1 \' \ x(A.)A.2dA. 
F (q) = Z .l p (r) e-iqr dar=.\ q' + 1.,2 

0 

00 

_ 2~ X (A.) -- 1 - q --.,-~ d! .. 
• q· T "'" 

(2) 
0 

The potential energy of the electron in the field 
of the charge (1) can be represented in momentum 
space by the following expression: 

00 

V ( ) _ ctZ F (q) _ ctZ (' d , " ( 1 
q -- 2Jt2 7- - 2Jt2- .\ A, jU /,)-X (1.)} q"+ 'i}. 

0 (3) 

We note the following set of relations which fol­
low from (1): 

00 

\' -n <r"> 
.\ X (!.) A, dA. = (n + 1)! ' 1l >- 1; 
0 

00 

I X (A.) t.,n+2 dA. = {(- ;__ \1" rp (r) LJ , n > 0, (4) 
.) ur r-+o 
() 

where (A) denotes the average value of the quan­
tity A. 

The scattering of a charged particle by an atom 
can be considered as the scattering by a nuclear 
charge density Pn ( r ) and by an electron shell 
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charge density Pe(r) with the total potential en­
ergy of the form 

()() 

rxZ 1 
V (q) =- ZJt' ,) d'A {[6 (/..)- Xnuc('A)] 

0 

v1 =- v (O), 
()() ()() 

Ys = - ~ d'As [6 ('As) - Xe (A.s) J - ~ d'AsXnuc(/..5), 

0 

rxZ v ('A) = 2Jt2 (q' +'A'). 

(5) 

(6) 

The term with screening in (6) can also be rep­
resented in the form of a finite number of terms 
I, (11); in this case, the operator Ys in (6) takes 
the form [see I, (14b)] 

4 ()() 

Ys = ~ as - ~ df..sXnuc(/..5). (7) 
S=l 0 

As was shown in I, the amplitude of scattering 
by the two potentials v1 and v2 can be represented 
in the following fashion: 

F (k, p) = Uk f (k, p) Up, 

f (k, p) = {1 (k, p) + {2 (k, p) (!i = c =I); (8) 

/ 1 (k, p) = 2n2 {<k I t\1 cp~> + <cp~ I V1l cp~> 

(9) 

M = e"~ I r (I - i£) j2 , 

V=~V. 

r (1- i~) 

r (1 + i~) • 

£ = rxZE ' 
p (14) 

where az are the Dirac matrices, K ( q, k, p, T/) 
is determined by formulas I, (19a), (19b). Making 
use of the results of Nordsieck, [S] we can repre­
sent K ( q, k, p, T/) in the form 

1 ( a )i~ ( a )i~ . . K (q, k, p, TJ) =a a; Ci;- 2F1 (t£, t£; I; z); 

a 2 = (q - k) 2 - (k + iTJ)\ 

z = [2a (kp + kp) + (a - a 1) (a - a 2) l!a1Uz, 

q = k- p. 

(15) 

(16) 

After calculation of the gradients in (12)- (13), 
which do not act on q, we can replace q by k- p 
in (16); we then obtain 

(17) 

The expression for (15) at large values of Z 
(small values of T/) can be obtained by using an 
expansion of the hypergeometric functions in in­
verse powers of z: [GJ 

2F1 (i£, i£; I; z) = (- z)-i~ l q 1 -=- i~) I" 

X {I + i£ In(- z) + £2L 2 ( ~) + 0 ( ~3 )} • 
(18) 

Substituting (18) in (15), and using (17), we get 

1 1 s2 { e• + f12 }2i~ 
· (10) !( (q, k, p, 'A) = M(/2 e2 +f12 e (1 + ifl) 

In these formulas, p and k are the momenta of 
the incoming and outgoing electrons, I cp~) are the 
wave functions of the electron in the potential V1, 

which are determined in I, (6). The formula (10) 
is obtained from I, (5b) with the help of I, (6b). 

As was shown in (I), (18)-(19), the matrix ele­
ment of (9) and the first four matrix elements of 
(10) can be expressed in the form 

v 0:0 
= y 4 (aZ) 2 -~id dTJK (q, k, p, TJ) Me'"', (12) 

). 

I , I vp v" 
SJ = 2:n2 <cp"IV ('A) lcpv>=r4 (aZ)3 (-2i£) (-2i£) 

()() ()() 

X ~ dTJ \ dTJ' /( (q, k, p, 11') Mei'", 
~ ~ 

(13) 

11 = V2p, e = q/2p. (19) 

As is seen from (19), the value of K is propor­
tional to 1/M for small p.(A.). Since the principal 
contribution to the integrals (12) and (13) is made, 
for small A., in the region close to the lower limit 
of integration, M is practically eliminated from 
all three matrix elements (11)-(13). This state­
ment will be valid also for the remaining terms of 
(10). The case of large A. will be considered [in 
Sec. (5)] only in the region where E/p ~ 1 and 
~ ~ 01.Z. Therefore, we shall everywhere expand 
M in terms of ~ in what follows. 

Making use of the formulas of the appendix and 
discarding terms of order ( 01.Z )4 and the phase 
factor eicp, we get the following expressions for 
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the matrix elements appearing in (9) and (10):1> 

So= 2:rt2 <k I V1l cp~) = r 4 aZq-2 exp (n In e2), (20) 

s2 + fl-2 e ( 112 
)]} + 4 In 5 (1 +ill) In fk- L 2 - 62 , (21) 

S2 = 2rt2 <cpZIV (1.) [cp~> = 2rc2 <cplitl (1.) 1 cp~> 
= (:tZ)2 E- r.m {K ( ) r 4 q' P 1 11 

+ 2aZ ! [ K2 (!l) + ~ K1 (!l) ]} , (22) 

S _ (:tZ)3 m (r.E- m) K ( ) 
, 3 - r 4 -q.- P" 3 11 • , (23) 

s4 = 2rt2 <cp~ I v ("') Gt\ I cp~) = 2rt2 <crll VlGV (A,) I cp~) 

= y4 (:t:.)• {! E -/•m K~ (!l) + m (14~- m) K~ (!l)}, 

(24) 

S5 = 2rt2 <cpZ IV (1.1) GV ("2) ['cp~) 
(aZ)2 { E E- 14m } 

=- r.-q.- {JK4 (Ill> 112) + P K. (Ill• fl2) • 

The functions Ks ( J.l) entering into (22)- (2 5) 
are determined in the appendix. 

(25) 

Substituting (20)-(25) in (9) and (10), we get an 
expression for the transverse scattering cross 
section in the presence of the initial polarization 
?; [see I, (30)]: 

. -& 
e = sm 2 , 

n=~· 
kpsin~ ' 

cos\!'=~ 
kp ' 

(26)* 

Q = Ql + Q2, 

R s =Q·' (27) 

where Q1 and R1 are determined by the scattering 
on a point nucleus and are given by formulas I, (31) 
and I, (32) after expansion of M( 14) in these for­
mulas in powers of ~. The expressions for Q2 

and R2 have the form 2> 

Q2 = (1 - ~2e2) .A (2 + .A) + 2aZ Re {~ (1 - e2) 

X[<&' +.A (<&'o +~)I+ ~-1 (1 - ~2e2) [53+ .A 

X (sao+ sa)]}+ 2 (o:Z) 2 Re {(1- e2) 

X [2~- it+ .A (2~o- &0) +53<&'~+ <&'fliJ~ + ~2<&'<&'~] 

+(I- We2) [.Alto+ it+ ~~2 (fliJfliJ~- .Af!- ff)]}, (28) 

!)The first equation in (22) and (24) is satisfied only under 
the condition that the matrix elements are enclosed between 
the bispinors iik and Up [see (8)]. 

*[kp] = k X P· 
ZiWe note that Eqs. I, (33) and I, (34) contain misprints 

corrected in (28), (29) and (30). 

R 2 = - 2ale (1- ~2)'1• (1 - e2)'1• Im {~[<&'+.A (<&'0 +~)I 

+ o:Z [2~- it+ .A (2~o- Ito)+ ~sa~+ ~ofliJ*]}; 
(29) 

<&'o = K1 (0), ~o = K2 (0) + f rrK1 (0), 
£' 

Ito= Ka (0), 

<&' = 2rsK1 (!ls) + YsYrKs (fls, !lr), 

~ = Ys !2K2 (!ls) + rrK1 (!ls) + K~ (!ls)l, 

iff = Ys !K3 (!-Ls) + 2K~ (!ls)J, 
cr [ 2 e2 + 11~ 
3- =-r. 2In s (1 +ill,) 

(30) 

3. SCATTERING AMPLITUDES IN THE POTEN­
TIAL e-'Ar /r FOR SMALL 'A 

The parameter 1.1 in (30), as will be shown in 
Sees. 4 and 5, can in certain cases be regarded as 
a small quantity and expansion can be carried out 
in terms of it. However, before undertaking to ob­
tain the corresponding formulas, we shall make 
clear certain properties of the scattering ampli­
tude in the potential V( A.) (6) for small A.. 

The scattering amplitude in this potential can 
be represented in the form (9), by replacing vi 
in (9) by V(A.). We shall first consider the term 
in (9) corresponding to nonrelativistic scattering. 
By representing it in the form of a perturbation 
series in powers of aZ, and carrying out certain 
transformations treated in detail in Sec. 2 and [1] 

(in what follows we shall denote this paper by the 
symbol II), we obtain 

t (q, "') = 2rc2 <k 1 v ("')I 'P~> 
= r4aZB (is, q, a) A (i£, '11· a), 

'11 = 1,/ p, '11 ~ a ~ 1, (31) 

where A (i~. TJ, a) is identical with the correspond­
ing function in II and is given by Eq. II, (15). The 
value of B (i~, q, a) is determined by the series 
II, (9a) with the coefficients Bk, which are equal to 

1 
Bo = (j2 + t.,•; (32) 
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1-x + (2iT]Ak-1 - TJ 2) 1 " + iexk, 
-xk-1 

1-xk 
F (xk) = -:-(q-+-:--P-x"")2'_-----,-:(p.::...,A-k-,+-t;-;;-.f..-co)2 

(33) 

In contrast with II, it is not possible to neglect 
A. in (32) because all the Bk diverge at the upper 
limit for A. = 0 as a consequence of the equality 
k = p. To clarify the actual behavior of Bk for 
small A., we divide all the integrals into two parts 
with Xk < 1-b and Xk > 1-b, where T/ « b « 1; 
we then get 

k 

B" = Bo 2] DnCk-n; (34) 
n=O 

1-b 

- ___!_ { \' dx }n - ___!_ Inn ___!_ . 
- n! j (1- x) x - nl ab ' 

(35) 
a 

Y~< = 1 - x", s" = 1 +a(___!_+ ••• + ___!_) = sk-1 + ~, 
Yt Yk Yk 

-if..(2p+if..) -if.L(1+if.L) ').. q 
azk q2 + f..2 82 + f.L• f.l = 2ji • e = 2ji · 

Making the change of variables azk = YkSk, 
dyk /ykSk = dzk /Sk-tZk, we get 

b+cr 
Zo=-cr-~a. 

(36) 

(37) 

In its structure, (37) is identical with Eq. II, (13) 
for Ak. Therefore, by making the same transfor­
mation as in II, we get 

n=o 

d0 = 1, d2 = :n:2/12. 

(39) 

(40) 

Using (34), (35), and (38), and also II, (9a), II, (15) 

and II, (20), we get the following expression for (31): 

_ :!:!:___8_2 -{ 82 + f.L 2 };~ · · -2i~ln!J. · f (q, f..) - Y4 q2 82 + !12 1 + if.L b (t£) d (ts) e + o (f.l), 

(41) 
()() 

b (a)= e-ac;r (1 +a), d (a) = ~ akdk. (42) 
k=O 

It is not difficult to verify that d( a) has a fi­
nite radius of convergence. As f.J.-- 0, the ampli­
tude (41) must go over into (20); therefore d( i~) 
can differ from b- 1 (i~) only in its phase factor. 
By comparing the first few coefficients of the ex­
pansion of b [II, (14c)] and d [ Eq. (40)], we find 
that b( iO d( i~) = 1. Thus we finally get 

f (q, f..)= Y4 ~~ g (e, f.l) e-2iEin!J., g (e, 0) = ei:In•'. (43~ 

We note that the infrared phase factor for the am­
plitude (31) has been shown to be equal to the 
square of the infrared phase factor for the wave 
function II, (21). 

We have considered only the nonrelativistic 
scattering amplitude. In exactly the same way, it 
can be shown that the infrared phase factor (43) is 
separated out also for the relativistic amplitude. 

4. SCATTERING AT E < 1 MeV 

For energies less than 1 MeV, the form factor 
of the nucleus (2) can be regarded as equal to unity; 
therefore the operator Ys in (6) and (7) can be re­
placed by 

00 4 

Ys =- ~ dlvs [b (As)- Xe(lvs)l = 2] Gs, Ys·1 =0. (44) 
S=1 

As follows from I, (11), the parameter f.J. in (30) 
is found in this case to be equal to 

(45) 

where bs are quantities of the order of unity and 
were determined in I, (llb). Over a rather wide 
range of energies and charges of the nucleus Z, 
the parameter (45) is a small quantity; therefore, 
we shall expand the expression for the cross sec­
tion (26)-(29) in terms of the parameter (45). 

We note that, by virtue of the last equation in 
(44), we have 3> 

YsF (f.ls) = (Ysf.ls) F' (0) + f (Ysf.l;) F" (0) + ... 
(rsF (0) = 0). (46) 

3>The expansion of the amplitude (10) in terms of p. will 
also contain terms proportional to ln p.; however these terms, 
as was shown in the previous section, are an expansion of the 
phase factor and should not enter into the formula for the 
cross section (28) and (29). 
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It follows from (46) that all the terms containing 
V¥ are proportional to ( fJ.O!Z )n, and consequently 
the terms neglected in (10) are of the order 
( aZ )3fJ.2. 

Expanding (30) in terms of fJ., we get 

5a - 2i (rs In f.ls) + 2 (Ysf.ls) + i (Ysf.l~) 

2 (1- In s2)- s2 + ( 3) 
e2 o f.l ' (47a) 

(47b) 

g)= (Ys!ls) e -:/<t&'0 - 2i (1 +In e2)} + 2i (Ysf.ls In f.ls) 

- i~0 (rs In !ls) + o (!12), (47c) 

<t = - 4i (Ysf.ls) (1 + In e) + 4i (Ys!ls In f.ls) + o (!12), (47d) 

1f = 4i (Ysf.ls) In e2 + 2 In e2 (y,Jn f.ls) 

(47e) 

Substituting (47a), (47b) in (28) and (29), we have 

Q2 = .A {2 (1 - ~2e2) + :rtaZ~e (1 - e)} + 2aZ (Ysf.ls) 

X {2 1 - 132 + :rtaZ ( 1 - e2) [1 - s + (1 - ~2) _s_J} 
13 s 1 + s. 

+ o (f.12a2Z2), (48) 

R2 = - 2aZe (\-::::_ ~:r- {.A ~e2 In e + ~ (1 - e2) (Ysf.l;) 

+ 2aZ (Ysf.ls) In e} + 0 (!l2a 2Z2), 

s2 1 2 ( !14 ) Jl = F (q) - 1 = Ys ~+ 2 = - 52 (Ys!ls) + 0 g4 • 
8 fls 

(49) 

Using (4), (44), and I, (lla), (llb), we get 

m z'!, 
v=2prn• (50) 

We note that the terms proportional to ln fJ. in 
(47a)-(47e) are eliminated in the expressions for 
the cross section (48) and (49), we also eliminate 
the terms proportional to fJ. ln fJ.; this makes it 
possible to confirm the fact that the expansion 
g( E, fJ.) in (43) in terms of fJ. does not contain 
terms proportional ~o fJ. ln fJ.. 

In the expansion in (30) in powers of fJ., the 
quantity fJ.I E appears as an expansion parameter 
in addition to fJ.; therefore, (48) and (49) are ap­
plicable only for large angles, where fJ.I E « 1. 
However, in the zero terms in a Z of ( 48) and ( 49), 
the parameter fJ.2/E2 appears only from the expan­
sion of Jl.. Therefore, we have not expanded Jl in 
terms of fJ., assuming that the exact calculation of 
.A does not present any difficulties. Thanks to this 
fact, (48) and (49) can be used for not very small 
energies for 8 = 60° and even 30°. 

We note that the first term in (48) and (49) is 
proportional to fJ.2, as a consequence of which the 
principal contribution will be made by terms pro­
portional to aZ. The last term, which is propor­
tional to ( aZ )2, is of the same order as the first. 

The quantities Q = at=olaR and S = R/Q are 
plotted in the drawings as a function of the angle 
for the electron and the positron at various values 
of the kinetic energy of the electrons W and charge 
of the nucleus Z [for the positron in (48), (49), only 
the sign of Z changes but not v ] ; Q2 and R2 are 
computed from the formulas (48) and (49). Since 
terms of the order of (!J.aZ) 2 are discarded in 
(48) and (4!J), these formulas are more exact than 
the corresponding formulas I, (31) and I, (32) for 
Q1 and R1• Therefore, we have substituted the ex­
act values of Doggett and Spencer for Q1 in (26).rs] 
The values of R1 and Q1 in S were determined 
from I, (31), (32) with account of the expansion of 
M in terms of ~ because the deviation of the ap­
proximate values of I, (31), (32) for St = Rt/Qt 
from the exact values is smaller than for Q1 (see 
[9]). 

5. SCATTERING AT E > 1 MeV 

In the case in which the energy of the incident 
electron E > 1 MeV, the effect of the electron shell 
can be neglected. 4> Then the operator Ys in (6) 
takes the form 

00 

Ys = Yt. = - ~ d'Ax (!.); Yt. ·1 = -1. (51) 
0 

If the energy in this case is not very large, so 
that 2pR « 1, where R is the radius of the nucleus, 
then it is appropriate to expand Eq. (30) in inverse 
powers of fJ.. This leads to an expansion of the 
cross section in the quantity Xn = ( ( 2pR )n) /( n + 1)! 
on the basis of (4). The terms of (10) which are 
proportional to ( aZ )3 are shown in this case to be 
of the order of the neglected terms; therefore we 
shall not take them into account and shall write 
(29) and (28) up to terms of order aZ 5> 

4> As is well known, for a kinetic energy of the electrons 
W =E-m lying in the range 0.2 MeV < W < 5 MeV, the effect 
of the electron shell and the finite dimensions of the nucleus 
does not exceed 1%. This also follows from Eqs. (48), (49), 
and (52), (53). 

5lThe functions K4 (p., v) and K5(p., v) in (30) are not repre­
sented in the form :Sm, n am, n p.-mv-n in the expansions in 
terms of 1/ p. and 1/v; however, as a consequence of the fact 
that the principal contribution in the interval (51) is the region 
close to .\- 1/R, one can write approximately YI-'YvK(p., v) 
= Yi-LYvK(p., p.) = -yi-'K(p., p.). We also note that the term of (52) 
containing X2 was obtained by Lewis.[• 1 
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Q2 = - e2X2 {2 (1 - ~2e2) + naZ~e (1 -e)} 

+ 5aZe2X 3 [(I - ~2e2)/~- f-~ (1- e2)J; (52) 

R.2 = - 2aZ~e3 e1-:::_~62l r X 2 {1 - e2 (1 + In e)}, 

X = <(2pR)n> 
n (n + 1)! • 

(53) 

For 2pR > 1, it is again possible to make an 
expansion in p.. However, in this case, it is con­
venient not to separate the Coulomb term in (5). 
The potential energy of the nucleus in this case 
is described in the following fashion: 

00 

V (q) ==:V =ft. V (!.), f),= fp. = ~ dA{b (!.)- Xnuc (!.)}, 

(54) 
00 

I'p.F(O) =~ d/.{6(1.)-Xnuc(I.)}F(O) = 0. (55) 

We represent the amplitude of the scattering 
(8) in the form of a Born series in powers of (54): 

f(k, p) = 2n2<kiVI'IJJp) = 2n2{<kiVIP> + <kiVGVIP> 
+ <k Wavav 1 P> + ... }. . (56) 

By virtue of (55) [see (46)], each term of (56) 
is seen to be of the order (p.aZ )n, where n is of 
the order of the number of terms in the series. 
The last term expressed in (56) is proportional 
to ( p.aZ )3, and we shall not take it into consider­
ation. Using the expansion (A.8) and (A.9) in p., 
and neglecting m/E in comparison with unity, 
while taking Eq. (4) into account, we obtain the 
following expression for the scattering amplitude 
(26): G) 

cr (il') = aR (1 - e) 2 { [rPnuc(r) lr-+ol 4~2} ( 1 -8 aZ ( 2p1R) ). 

(57) 
We note that if the charge distribution in the 

nucleus is described by the Fermi function, which 
is practically constant close to zero, then the con­
tribution to the amplitude will be given only by 
terms containing p. and p.3, because on the basis 
of (4) we have 

fp.!-l= --(.2;R >· (2 P)3 I'~'-!!3 = :,- 'Pnuc(r) lr~o = Pnuc(O), 

(2 p)n+~ rl"l-ln+2 

(n=f=-1.1). 
(58) 

Because of the absence in (A.8) and (A.9) of the 
terms of the expansion containing Jl.sP.r• 
P.sP.r(P.~ + p.~) and p.~p.~. the contribution to the 

6)Equation (57) was obtained in a somewhat different form 
by LewisJa] 

amplitude in this case can be made only by the 
third and subsequent terms in (56). In principle, 
this fact can serve as a proof of the validity of 
the particular model of the nucleus. 

6. CONCLUSIONS 

Application of the Laplace transform has made 
it possible to separate the small parameters P.s 
in explicit form. Expansion in terms of these pa­
rameters has made the resultant formulas (48), 
(49), (52), (53), and (57) simple and convenient for 
computation. The fundamental difficulty in the 
method under consideration is the appearance of 
logarithmic terms (In p.) which at first glance 
make a meaningless expression for the scattering 
amplitude. However, as was shown in Sec. 3, these 
terms group themselves into a phase factor and do 
not enter into the scattering cross section. 

It is evident from Eqs. (48) and (49) and Figs. 
1 and 2 that the screening effect at not very small 
Z increases the scattering cross section for elec­
trons somewhat and decreases it for positrons. 
This fact is in agreement with the result of the 
researches of Mitra and Tietz. [i] 

~~so/5'11 W= O.OS MeV 
f.2 ,------------, 

0.5'-------' 

W·O.I MeV 

0Jo ' go rso J.':::-o--L--,gfo~---'---,,:-:-so-;;---' 

W=O.tS·HeV 

JO 90 150 
~. deg 

FIG. 1. Angular dependence of the quantity Q(t1) = Q1(t1) 
+ Q2(t)) for electrons and protons. The dashed curves give 
Q1(t1), constructed from the results of Doggett and SpenserJ• 1 
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s w=o.os Mev 

Q 
0.! /~=5/'~:\ 

L ' \ 

'"V I ~ 
.I ~ 

W=O.!MeV 

O,O/~ < < I L~ ~ I 

JO oo go 120 151! tllilJ""-o---o!6o~g,:!-::~-----o-!t2."'"'1J....,~~so~ISO 
.J., deg 

FIG. 2. Angular dependence of the quantity S(l1) 
= [R,(!1) + R2(!1)]/[Q,(t1) + Q2(11)1. The dashed curves give 
S,(i1) = R,(i1)/Q,(t1). The quantities R,(t1) and Q,(t1) are cal­
culated from Eqs. I, (31) and I, (32). 

The author thanks L. A. Sliv and M. Ya. Amus'­
ya for valuable discussions of the research and also 
thanks G. S. Polikanov for verification of certain 
calculations. 

APPENDIX 

The last term in (10) has the form 

S 5 = 2n2 < cp% I V ( 1..1) GV P•2) I cp~) 

= 2n2 <k 1 V (1..1) GV (1..2) 1 p) + o (V1V;) 

= (cxZ)• \' ____ 'Y4_(_is'_-_m_)_l_4 d_3_s c-----::-

2n2 .l (q~s + A.il (s•- p• - ie) (q~p +A.~) 

Qfs = f- S. (A.1) 

Recalling that the bispinor up stands on the 
right hand side of all the matrix elements [see (8)], 
and taking into account the identity 

(m- is) r4uP = (2£ + qsp)up, 

we represent (A.1) in the form 

s5 = s~ + s~, S! = - 2n2(k I v (1..1) GoV (1..2) I p)' 
S~ =- 2n2(kiV (A.1)G1V (A.2)jp); (A.2) 

G0 = 2E/(s2 - p2 - ie) G1 = flsp /(s2 - P2 - ie). (A.3) 

By using Eq. II, (3), we get 
1 

Sl _ ( Z) 2 .E I dy 1 
5-- Y4 a L .l A (k-B)2-(A+iA.l)2' (A.4) 

0 

2 1 ( (~ r . py 1 ) 
S 5 = - y 4 (aZ)2 2 ~ dy \1 B ~~ d'l'] - t A ~='-• · (A.5) 

1 
X (k - B )2 - (A + iT))2 ' 

B = p- py. (A.6) 

Integration over y in (A.4) and (A.5) is easily 
carried out by means of the substitution A + py 

= 2pt. By then calculating the gradient and the in­
tegral over 17 in (A.5), and taking I, (21a) into ac­
count, we get 

1 (cxZ)2 E s. = - Y4 q• ~ P K4 (Jll, fl2), 

2 _ (aZ)2 p . s.-- Yc-qa--;; K. (ftl• fl•), (A.7) 

K ( _ i I 2ea~ (a+~)- i {1 +(a+ ~)2 + P} _ . I 2 
4 fl1• !12) - P n 2ea~ (a+ ~)-i {1 +(a+ !3)2- P} - £ n e 

- i (In fl1 + In !J.J + Jl1 + fl2 + i 2 ;/ (ft~ + fl~) 
3 + e2 ( 3 3) 3 ( 4 -382 ftl + ft2 ---szfllfl2 Ill+ l-'2) + 0 (J.t ); (A.8) 

Ko (ftl• fl2) =-} 1 ~ e• { (1 + a2 + ~2) K4 (ftl• JlJ 

+ .. ( 1 I 1 + ia + i~ I 1 + is a I 1 + is~ )} 
t s n-1+ia+if3- n~- n~ 

K (0) + i ( 2 2 1 1 + s2 3 a = 1 - Jl1 - Jl2 2 fl1 + fl2) + 3 - 6-2- (fll + ft2) 

+ *Jl11-'2 (J.tl + 1-'2) + o (ft4), (A.9) 

where 

a = Jl/e, ~ = Jl:/8, 

8 = q/2p, fl = A./2p, q = k - p. (A.10) 

Equations (A.8) and (A.9) were obtained by an­
other method. [S] However, we need the expres­
sions (A.4) and (A.5) for calculation of the matrix 
element in (10). In this case, we initially consider 
the following quantity: 

I A A 

S (A.l, A.J = - 2n2 (cpk \V (A.l) GV (1..2) I cpp0) 

= S1 (1..1, A.J + S2 (1..1, "-2), (A.ll) 

S1 (A.1, A.z) = - ~ (cpkl f) 2n2( I tv C"-1) GoV ("-2) \ p) d3f 

+ o (a4Z4), (A.12) 

S2 (1..1, 1..2) = - ~ (cpk\ f) 2n2 (f I v (1..1) a, v (1..2) I p) + 0 (a4Z4). 
(A.13) 

Substituting the functions (A.12) and (A.13) in 
the integrand in place of the second factor of the 
expression (A.4) and (A.5), and using ((/)kIf) in 
I, (17b) in explicit form, we carry out the integra­
tion over f by means of I, (A.1). We then get 

00 1 

S1 (A.u 1..2) = iy4 (aZ)3 E ~ d'l'] ~ dy 1 J ('I'J). (A.14) 

"' 0 
00 1 

S 2 (1..1, A.J = Y4 (aZ)S ~ dTJ + ~ dyJ (TJ') 
)., 0 

(A.15) 
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X (n- B - kx)2 ~ (kx +A+ i1])2 I n=k 

k- B + k (A+ il])/k 
= [(k- 8)2 - (A+ i1])•J[B2 - (k +A+ il])•]· (A.16) 

In (A.15) the operator with the arrow pointing 
to the left acts on the left. By means of a direct 
verification, we can establish the fact that 

therefore 
00 1 -

S2 < a . r 1 1 { k - Y - -} J.1 , J.2) = y4 (aZ) t .\ dT] T .l dy k J (TJ) -A J (TJ) P · 
At 0 

(A.17) 

The integral over y in (A.14) and (A.17) is 
easily carried out with the aid of the latter substi­
tution. The integral over TJ can be expressed in 
terms of elementary functions only after expansion 
of the integrand function in a series in ;\2• Discard­
ing terms of the order ;\.~, we get, by using I, (21a): 

s1 ('A 'A ) _ (llZ)3 !i_ p 
1• 2 - Y4 q• P P 

00 

(' { 1 ( a2 + 1]2 • ) 
x .) dT] (1 + il]) (a•+ 1]•) In :__ i1] (1 + il])- In £112 

P.t 

(A.18) 

00 

2 . ' - ( llZ)s I d {[ i I a• + lJ• i I 1J + f..t• S ('A1, ll.g)- Yrqr .l 11 1 + il] n -1].-- 1 + i1J n -1]-
P.• 

a2 + il] ] 1 - kpjkp 
+ 112 (a• + 1]•) (1 + il]) 2 

(A.19) 

Further, noting that 

Sa = (q>kl V (J.)i cp~) = - (cpkl V (J.) G1 V (0) I p) 

+ o (a4Z4) = S 2 (J., 0), (A.20) 

s, = (q>k lV1GV (J.) liP~> = - <~PliV (O) av (J.) I P> 
(A.21) 

and taking into account the identity I, (21a), (21b), 
we get 

(A.22) 

+ 2il1 (In f.L - In e- 1) + o (112), (A.23) 

S = (11Z)3 {!i_ E- Y4ff! K1 ( ) + m (y,E- m) K1 ( >} (A.24) 
4 r 4 q• P p, 2 11 P' a 11 , 

(A.25) 

K~ (11) = K3 (0) + i11 (In 11 - In e- 1) + o (112), (A.26) 
00 

K1 (fl) = ~ ta• + 1J:;d~ + i1JJ =K1 (0) - 11 + f 112 + o (f.L3), 

IJ. 
(A.27) 

:n: a . g2 

K 1 (0) = ~ o = 2 -1 +a + t 1 _ a• In e, (A.28) 

= K2 (0) + 11 ~ + i11 (In 11- In e2 - 1) + o (112). 

(A.29) 

The exact values of (A.27) and (A.29) were ob­
tained in I and are given by the formulas I, (24) 
and I, (25). 
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