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The shape of the total-energy surface of a rotating nucleus is studied in the zeroth ellipsoidal 
approximation on the basis of the liquid drop model. An essential change occurs in the sur­
face for the fission parameter value x0 = 0.81; for x < x 0 a new stable equilibrium state is 
possible without axial symmetry. The range of x is determined for the previously studied [1] 

fission behavior of a rotating nucleus. It is shown that the approximation used for the equi­
librium shape is valid for x = 0 and x ~ 1. 

THE experimental investigation of compound nu­
clei formed in reactions with multicharged ions, 
and therefore possessing high excitation energy 
and large angular momentum, has made it neces­
sary to investigate theoretically the effect of large 
angular momentum on the equilibrium shape of a 
rotating nucleus and to determine the stability of 
the equilibrium shape. These properties of a ro­
tating nucleus must be known as a basis for inves­
tigating the disintegration processes of the com­
pound nuclei. 

The total excitation energy of these nuclei can 
be divided into the thermal excitation energy and 
the potential energy, which depends on the nuclear 
shape (including the rotational energy ) . When a 
nucleus possesses high excitation energy the ef­
fects of nucleon pair correlation and shell struc­
ture can be neglected; under these conditions the 
nuclear moment of inertia can be regarded as that 
of a rigid body. The equilibrium shapes of a ro­
tating nucleus correspond to maximum thermal ex­
citation energy. Therefore stable equilibrium cor­
responds to a minimum of potential energy, while 
unstable equilibrium is represented by a saddle 
point on the potential energy surface. 

The influence of angular momentum on the equi­
librium shape of a nucleus is determined on the 
basis of the liquid drop model, which appears to 
be entirely adequate in cases of high excitation 
energy. Despite its simplicity the liquid -drop 
model enables us to consider the nuclear proper­
ties that are most essential in determining the 
shape of a rotating nucleus and the character of 
its stability. In this model the potential energy, 
which depends on the nuclear shape, is the sum 
of the surface, Coulomb, and rotational energies. 
This model has already been used to study the in­
fluence of angular momentum on the equilibrium 
shapes and stability of heavy nuclei. [1] Relatively 
light nuclei (A ~ 50) have recently been studied 

similarly;[!!] in these cases the shapes of rotating 
nuclei were approximated by families of prolate 
and oblate axisymmetric ellipsoids. For each such 
family and at all values of the angular momentum 
a minimum potential energy exists which is lowest 
for an oblate ellipsoid rotating about its axis of 
symmetry in the case of small angular momentum. 
For large angular momentum the minimum is 
lower for a prolate ellipsoid rotating about an axis 
perpendicular to its axis of symmetry. The approx­
imation of nuclear shape used in [2] cannot be used 
to determine the character of the transition from 
one equilibrium shape to another. It is thus impos­
sible to determine whether this transition is con­
tinuous or whether an energy barrier exists be­
tween the equilibrium shapes. In C~.J the equilib­
rium shapes were studied for a single value of A; 
the shapes can be determined accurately for a neu­
tral nucleus. [a] However, the stability of these 
shapes must be redetermined, since in [a] the sta­
bility of the equilibrium shape was investigated at 
constant angular velocity, whereas angular momen­
tum is conserved in a rotating nucleus. 

In the present work the equilibrium shapes of a 
rotating nucleus and the character of their stability 
are studied for the case in which the shape can be 
approximated by a triaxial ellipsoid. In this approx­
imation the stability can be studied over the entire 
range of the fission parameter. Although an ellip­
soid is not a true equilibrium shape of a rotating 
nucleus, we can expect that this approximation will 
be sufficiently accurate for the angular momentum 
range under consideration. 

EQUILIBRIUM SHAPES IN THE ELLIPSOIDAL 
APPROXIMATION 

Let the nuclear surface be represented by 

(1) 
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where R0 is the radius of a sphere of equal volume 
and the semiaxes of the ellipoid satisfy the relation 
abc = 1 (conservation of volume). We shall con­
sider the case in which a and b are nearly equal. 
It is convenient to introduce a parameter o char­
acterizing the degree of asymmetry of the ellipsoid 
as follows: 

a2 = CVI +112 + 1\)jc, b2 = (JIT+62- b)jc. 

For o « 1 the sum of the surface and Coulomb en­
ergies (expressed in units of 47rR~O, where 0 is 
the coefficient of surface tension) is given by 

00 

Us + Uc = 2J 'Pk (c) l'J2k, 

k=O 

where 
1 1 

1 c2(' du 2x(' du 
'Po (c) = 2c + 2 J '¥ (u) + c ~ ID (u) ' 

0 0 

1 1 

( ) = !:..._ (' (1 - u2)2 du _ ~ (' u2 (1 - u2) du 
'PI c 4 J 'f"S (u) ci ,\ (lJS (u) ' 

0 0 

1 
c2 {(' (1- u2)2 du 

CJl2 (c) = -16 ~ '¥s (u) 
0 

I I 

+ 3c3 (' u2 (1- u2)3 du } + ~ {\' u2 (1- u2) du 
J '¥5 (u) 4c4 ,\ 11>8 (u) 
0 0 

I 
~- (' u4 ( 1 --: u2)2 du } . + c8 .\ a>• (u) ' 

0 

'l'(u)=l+(c3 -l)u2 , <D(u)=l+(~ -l)u2 • 

Here x = (3Z2e2/10R0 )/(47rR~O) is the fission pa­
rameter; Ze is the nuclear charge. The rotational 
energy of an ellipsoid rotating about the z axis is 
represented by 

U rot = yc { 1 - -} 62 + f 64 + , .. } , 

where y = (M2/2I0 )/(47rR~O), M is the angular 
momentum, and I0 is the moment of inertia of a 
spherical nucleus. 

In the first approximation with respect to o2 

the potential energy surface U =Us+ Uc + Urot 
of a rotating nucleus possesses three extremal 
points which are determined from the following 
equations: 

1\ = 0; cp~ (ci) + y = 0; (2) 

1\=f= 0; cp~ (c2) + y + 112 [ cp~ (c2) - + y 1 = 0, 

'PI(c2) --} C2Y + 21\2 [cp2 (c2) + + C2Y 1 = 0. (3) 

Here cp' (c)= dcp (c)/de. 
For small y Eq. (2) gives the stable equilibrium 

point at which the nucleus is an axisymmetric oblate 
ellipsoid ( o = 0) with its angular momentum vector 
along the axis of symmetry. For all values of the 
fission parameter x there exists a critical rota­
tional energy Ycr at which the oblate ellipsoidal 
shape begins to become unstable. The values of 
y cr and of the smallest semiaxis c0 of an oblate 
ellipsoid for y cr are determined from 

cp~(co) + Yer = 0, 'PI(co) ---}CoYer = 0. 

These values are given in Tables I and II. Fig­
ure 1 shows the approximate dependence of 
( 1- c1 )/(1- c0 ) on y/Ycr• which is determined 
from (2) and which holds for all x to within a few 
percent. 

The behavior and properties of the extremal 
points given by (2) and (3) are investigated most 
simply for y ..... y cr· Then for t::..y = y - y cr « y cr 
we obtain from (2) in first approximation 

1\ = 0, 

and for the points of (3), where the nucleus is a 
triaxial ellipsoid, we have 

112 = N (x) /). 
F (x) y, 

p (x) 
c2- Co= - F (x) l'!y, 

(4) 

F(x) = 2cpo (co)1 'P2 (co) + 8 CoYer - 'PI (co) -2 Yer · (5) " [ 3 ] [ ' 1 ]2 

Table I 

X 0 I 0.1 I 0,2 I 0,3 I 0.4 I 0,5 I 0,6 I 0.7 I 0.8 

Yer 0.2831 0.248 0.214 0.180 0,147 0.115 0.0835 0.0559 0.0302 
co 0,7779 0.783 0,790 0.798 0.807 0.819 0.834 0.853 0.880 

10P(x) 0.852 0.824 0.796 0.771 0.751 0.728 0.711 0.701 0.702 
N(x) 0.729 o:673 0.620 0.563 0,504 0.447 0,387 0,323 0.261 
F(x) 0.186 o:152 0.120 0.0923 0.0678 0.0461 0.0278 0.0129 0.001 0 

q>" o(co) 1.94 1. 75 1.55 1.36 1.16 0.960 0.765 0.564 0.372 
A(x) -0.743 --'-0.860 -1.03 -1.27 -1.62 -2.26 -3.62 -7.18 -92 

10Ko (x) 0.372 0,315 0;257 0,209 0.162 0.120 0.0805 0.0471 0.020 7 
KI(X) 0.222 0.218 0.210 0.202 0.193 0,181 0.166 0.147 0.120 
K2(x) 0.258 0.287 0.322 0,368 0.432 0.521 0.654 0.886 1.34 
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Table II 

x I o.82 I o.8o I o.86 0.88 1 0.90 0.92 1 0.9. 1 0.96 1 0.98 

10 Ycr 0.257 0.213 0.171 0.133 0.0975 0.0665 0.0397 0.0195 0.0045 
co 0.887 0.894 0.902 0.911 0.922 0.933 0.946 0.961 0,980 

10P(x) 0.703 0.705 0.708 0.711 0. 716 0.720 0.727 0,735 0.745 
N(x) 0.246 0.232 0.218 0.203 0.189 0.177 0.158 0.146 0.130 

100F (x) -0.095 -0.286 -0.463 -0.623 -0.764 -0.887 -1.03 -1.14 -1.22 
<p" o(co) 0.332 0.292 0.253 0.215 0.180 0.146 0,098 0.069 0.032 

A(x) 96 32.2 20.3 15.4 

FIG. '1 

The values of these functions are given in Tables I 
and II. 

The character of the instability of the oblate 
ellipsoid for y > Ycr changes at x0 = 0.81, which 
is determined from F(x0 ) = 0. For nuclei with 
x > x 0 the instability of (4) for y > y cr results 
from the fission process discussed in detail in [1]. 

It was here possible to determine the interval of 
variation of the fission parameter, 0.81 < x :::;:; 1, 
for which the description of the fission of a rotat­
ing nucleus at y ~ Ycr considered in [1] is valid. 
In the ellipsoidal approximation we determine the 
fission barrier, which is equal to the potential­
energy difference between the saddle point (5) and 
the point (4): 

Ej(y) = A(x) (t..y)2 + ... 
=- (D.y)W2(x) I 2<p~(c0) F(x) +· .. , (6) 

while from [i] at y ~ Ycr we obtain 

Er(Y) = Ar(x) (D..y)2 + ... 
I 5 1 + 15 685 1 J (A )2 1 

=L161-x 3264 T···~ o.y <··· (7) 

The functions A(x) and A1(x) are represented 
in Fig. 2, which shows that the expression for the 
fission barrier in [1], holding true for y ~ y cr• 
can be used only for a very narrow range of x. 
The unlimited growth of A(x) and of the coeffi-

13.0 12.1 12.3 13.6 21.3 

JO-

20. 

FIG. 2 

cients of 6..y in (5) for x - x 0 is associated with 
the fact that at Ycr for x < x 0 the fission barrier 
is of finite height and its top is located at a finite 
distance from stable equilibrium. Thus the insta­
bility of the oblate ellipsoid for y > Ycr and x < x 0 

is not caused by fission, but is associated with a 
new stable equilibrium state of (5) where the nu­
cleus is a triaxial ellipsoid. We note that for nu­
clei with x < x 0 and y < Ycr no extremum of (5) 
exists, but appears only when the shape of the 
oblate ellipsoid becomes unstable, i.e., when y 
> Ycr· Since we are here investigating only shapes 
very similar to an oblate ellipsoid, the instability 
of the equilibrium shape (5) due to fission is not 
being considered for nuclei with x < x 0, since the 
shape of these nuclei at the top of the fission bar­
rier differs greatly from an ellipsoid. 

The difference between the potential energy at 
stable equilibrium and that of a spherical nucleus, 
for y :::;:; Ycr• is 

D.Ur = Ko (x) + K1 (x) D.y + K 2 (x) (D.yf, 

Ko (x) = CJlo (!) + Ycr- CJlo (co) - CoYer• 

K1 (X)= 1-c0 , K2 (x)=l/2<p~(co). 

The thermal excitation energy for y :::;:; y cr is the 
sum of the thermal excitation energy of a spherical 
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nucleus and ~UT; for y > Ycr and x < x0 the quan­
tity Ef(y) must be added. 

VALIDITY OF THE ELLIPSOIDAL APPROXIMA­
TION 

An ellipsoid is not a true equilibrium shape. 
For y » y cr a triaxial ellipsoid is an entirely un­
suitable approximation to the equilibrium shape of 
a rotating nucleus. For y ~ Ycr• however, the el­
lipsoidal approximation can be sufficiently accu­
rate. The axisymmetric equilibrium shape in el­
lipsoidal coordinates, 

where 2d is the distance between the foci of the 
ellipsoid, can be represented by 

00 

~ = ~0 ( 1 + ~ UtPz (!l)). 
1=1 

Here Pz( fJ.) represents Legendre polynomials and 
the coefficients az determine the deformation of 
the ellipsoid. For nuclei with x ~ 1 and x = 0 
when the true shape and exact potential energy at 
equilibrium are known, the validity of the zeroth 
( az = 0) ellipsoidal approximation can be deter­
mined. 

For x ~ 1 at equilibrium the principal deforma­
tion of a spherical shape is of the form {320P 2( cos e), 
[ 1] which represents an ellipsoid and is propor­
tional to 1-x. The deformation CX£ of the ellipsoid 
is proportional in this case to a higher power of 
the small parameter 1 - x than {3 20• The heights 
of the fission barriers determined from (6) and (7) 
are very close, and the expressions for Ycr in the 
case of an ellipsoid 

Ycr= f(I -x)2 [1- -}(I -x)] 

and for the exact shape [1] 

Ycr= +(I- x) 2 [1- 5~: (1- x)] 

differ only with regard to the numerical coefficient 
in the correction term. 

In the case of a neutral nucleus (x = 0) we can 
compare the shape and energy for an ellipsoid and 
for an exact equilibrium shape [3] at the instant 

when an oblate ellipsoidal shape becomes unstable 
(Ycr = 0.2831 ). Table III shows that all values are 
close. The exact equilibrium shape also differs 
very little from an ellipsoid [ ~~ = c~ I (1- c~); 
~0 = 0.9430 l: 

et2 =- 0.01 0, cr4 = - 0.024, 0:6 = + 0.004. 

We shall now determine the rotational energy 
for which instability of an exact axisymmetric 
equilibrium shape of a neutral nucleus arises [3] 

while angular momentum is conserved. Let the 
shape of the nucleus be 

r(1;, c:p) = aRo{ro(s) + y(1;, c:p)}, 

where aR0r 0(?;) is the radius of the equilibrium 
shape, aR0 is the equatorial radius, ?; = cos e 
( e and cp are the spherical angles), and y( ?;, cp) 
is the deformation of the equilibrium shape 
( y « r 0 ). The instability of the equilibrium shape 
with respect to the considered deformation arises 
when the change of potential energy associated 
with this deformation, 

becomes negative ( ~S is the change of the surface 
and ~I is the change of the nuclear moment of 
inertia). 

We shall consider y( ?;, cp) in the form 

Then for Emv « 1 we obtain in first approximation 

(8) 

where h = 15a3y/8(I' )2, I' = I/I0, v ~ 2 and the ex­
pressions for Amv and Cmv are given in the Ap­
pendix. It is found that Amv and Cmv depend only 
very slightly on h, so that it is easy to determine 
the value her at which the equilibrium shape be­
comes unstable with respect to the given deforma­
tion. 

Table IV gives values of her for three types of 
deformations with v = 2, and also the nuclear en­
ergy at her· Instability arises first for these de­
formations, since ~S increases with v, while ~I 

Table III 

a cja US I U rot I I' I U 

Ellipsoid I 
Ycr- 0.2831 1.134 0.778 0.686 1.027 0.220 1.286 1.247 
Exact shape 
y cr --0.2831 1.129 0.760 0.672 1.028 0.219 1.294 1.24 7 
her= 0,4565 
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Table IV 

v=2 

m=l I m=2 I m=3 

her 0.475 0.450 0.493 
Yer 0.2964 0.2784 0.3092 
a 1.134 1.128 1.138 
c 0. 751 0.762 0.744 

cja 0.663 0.676 0.653 

is independent of v. For m > 3, her increases 
with m because the term m 2 t 2 in ~S grows 
rapidly. Because of angular momentum conser­
vation the instability of the equilibrium shape 
arises for a considerably smaller value of h than 
in the case of constant angular velocity when her 
= 1. [3] 1> We note also that the rotational energy 
of a spherical nucleus Ycr = 0.2784 at which the 
exact equilibrium shape becomes unstable is very 
close to the value Ycr = 0.2831 for the instability 
of an oblate ellipsoid. 

Thus at the limits of the range of the fission 
parameter x the exact equilibrium shape of a 
rotating nucleus is very well approximated by an 
ellipsoid for y ~ y cr. Since all quantities ( c0, 

Ycr• etc.) vary smoothly with x, it can be ex­
pected that for intermediate values of x with y 
~ y cr the zeroth ellipsoidal approximation will 
be quite accurate, especially since for all x with 
y ~ y cr only a small deformation of the equilib­
rium shape occurs. 

In conclusion let us consider the consequences 
of the described behavior of equilibrium shapes in 
the case of a rotating nucleus. Figure 3 shows the 

O,J 

f}.f-

FIG. 3 

!)Sperber[ •] recently considered a similar problem for x = 0, 
obtaining her = 2.414. This large value is incorrect, since for 
all h > 1 the equilibrium shape must be unstable (for h > 1 
the hydrostatic pressure on the axis of rotation is negative).[~ 1 

I 

v=2 

m=l I m=2 I m=3 

Us 1.031 1,028 1.033 
urot 0.227 0.216 0.235 
I' 1.306 1.289 1.318 
u 1.258 1.244 1.268 

values of y cr and of the critical rotational energy 
En;t = B2A/10V ( q.ashed curve) [s] above which a 
rotating nucleus can emit neutrons at zero thermal 
excitation energy ( B = 8 MeV is the neutron bind­
ing energy, V = 40 MeV is the depth of the poten­
tial well for nucleons, 47TR~O = 17.8 MeV, r 0 

= 1.21 F). It follows that for nuclei with x < 0. 7 
after the emission of all neutrons y quanta come 
from a nucleus having the shape of an oblate ellip­
soid. Gamma-ray emission from a nucleus having 
large angular momentum must therefore fluctuate. 
The magnitude of E~~t also determines the order 
of the rotational energy at which neutron emission 
from a nucleus having zero thermal excitation en­
ergy is no longer forbidden, and the neutron width 
becomes equal in order of magnitude to the width 
when the entire excitation energy is of thermal 
character. On the other hand, for nuclei with x 
< 0. 81 at y cr the fission barrier is of finite height; 
consequently the fission probability of a compound 
nucleus where E~~t < 47TR~Oycr must be smaller 
than unity. This has been observed experimen­
tally. [6] It was found that at high excitation en­
ergies the fission probability differs from unity 
and varies slowly with the incident-ion energy; 
the fission probability decreases as x diminishes. 
This behavior is observed for nuclei with x < 0.65. [6] 

The author wishes to than B. T. Geilikman and 
D. P. Grechukhin for discussions. 

APPENDIX 

The change of the equilibrium surface shape is 

1 

!).S = 4nR~a2 ~d~ [BooBoo W + e'frzvBmv Wl, 
0 

Boo(~) = To(~) 11>'1' (~) [ ro ~~) + ~ ~g J, 
Bmv (~) =To(~) 11>'1• (~) (1 - J2i~~-l { ~ + m2~2 + 1 ~ ~2 

(1- ~2) [r0 (~)- 2m~r~ (~)] 
+ 2ro ({;) 

_ (1 -1;2) [r0 (~;)- 2m~r~ (~)]2 } 

4<D (~) ' 
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where 

r~(~) = dr0 WId~. 

For the change of the moment of inertia of the 
equilibrium shape we have 

1 

11/ = 4n:R~5Pm ~d~ [EooDooW + e!vDmv (~)], 
0 

Doo W = r~ W (l - ~2), Dmv W = r~ W (l- ~2)2m+1 • 

The conservation of volume enables us to express 
Eoo in terms of Emv: 

Eoo = - HmvE;,v, 
1 1 

Hmv = [ { ~ d~ rom (l - ~2) 2m J I~ d~r~ m 
0 0 

and from preservation of the center-of-mass posi­
tion we obtain Em1 = 0, so that v ~ 2. Thus the 
quantities Amv and Cmv in (8) are given by 

1 1 

Amv = a2 [~ d~Bmv W - Hmv ~ h~Boo W], 
0 0 

1 1 

Cmv = a2 [~dWmv (S) -Hmv ~dWoo m]. 
0 0 
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