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It is shown that a low-density plasma in a strong magnetic field is unstable with respect to 
excitation of drift waves in the presence of a longitudinal current. This instability is analo
gous to the current convective instability of a plasma with finite conductivity; the sole differ
ence is that Landau damping plays the role of collisions. Turbulent convection arising as a 
result of this instability leads to anomalous plasma diffusion characterized by a diffusion 
coefficient of the same order as the Bohm coefficient. 

1. INTRODUCTION 

IT is now well known that discharges in strong 
longitudinal magnetic fields exhibit an anomalous 
rate of loss of charged particles; this observation 
holds for a wide range of discharge parameters, 
starting with the glow discharge [1] and going up 
to high-current discharges in the stellarator [2- 4] 

and Tokomak. [S] As far as the glow discharge is 
concerned we find that the experimental data on 
anomalous diffusion [1] can be explained on the 
basis of the current convective instability in a 
plasma whose conductivity depends on density. [S, 7J 
In work reported earlier [BJ it has been shown that 
the current convective instability mechanism also 
operates in high-current discharges if there is ap
preciable cooling of electrons at the walls of the 
discharge chamber. At very high electron temper
atures this instability must appear by virtue of the 
very high thermal conductivity along the magnetic 
field. However, this result applies only within the 
framework of the hydrodynamic analysis, which is 
valid only when the particle mean free path is 
small. At very high electron temperatures and 
low densities the mean free path of the charged 
particles can be greater than the wavelength of 
the perturbations along the magnetic field; in this 
case the instability must be investigated by means 
of the kinetic equation. It is the purpose of the 
present work to present an analysis of this kind. 

It is shown below that the presence of a longi
tudinal current in a low-density plasma leads to 
a drift-wave instability such as that considered 
by Rudakov and Sagdeev. [s] This instability is 
similar to the current convective instability, dif
fering from the former only in that Landau damp
ing replaces the finite conductivity. On the other 

hand, since the drift waves considered here go 
over continuously to ion acoustic waves as the 
angle between the wave vector and the magnetic 
field is reduced, we can say that in the present 
analysis we have "joined" the current-convective 
instability and the plasma instability associated 
with the excitation of ion acoustic waves. [10• 11 J 
It will be shown below that the instability consid
ered here can lead to turbulent diffusion with a 
diffusion coefficient of the order of the Bohm co
efficient. [12 ] 

2. INSTABILITY OF AN INHOMOGENEOUS 
CURRENT CARRYING PLASMA 

We consider the following idealized problem. 
Suppose that in a plasma located in a uniform 
magnetic field H directed along the z axis there 
flows a longitudinal current so weak that the asso
ciated magnetic field can be neglected compared 
with H. We assume that the plasma density n and 
temperature T vary slowly along the x axis. If 
the Larmor radii of the electrons and ions are 
small compared with the characteristic length a, 
over which there are appreciable changes in n 
and t, the equilibrium distribution functions for 
the electrons fe and ions fi can be written in the 
form 

(1) 

where vi= vi+ v~, ~lj = ejH/mjc, ej is the 
charge and mj is the mass of a particle of type j. 
( For convenience we use the coordinate system in 
which the electric field vanishes.) 

We investigate the stability of the plasma with 
respect to longitudinal oscillations, in which case 
the electric field is derivable from a potential: 
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E' = -"Yep. In the semiclassical approximation the 
dependence of the potential on time and coordi
nates can be written in the form exp (- iwt + ik • r). 
If the transverse wavelength of the waves is much 
greater than the Larmor radius of the particles we 
can neglect the gyration so that the solution of the 
kinetic equation giving the perturbation of the dis
tribution function fj for particles of type j is 
written in the form of an integral over a recti
linear trajectory: 

, e. of. ~ 
fi = _1_ ikljl-f" \ exp (- iwt + ikzvzt + v}t), (2) 

mi v J00 

where Vj, the collision frequency for particles of 
type j, takes account of collision damping. 

At wavelengths appreciably greater than the 
Debye radius the dispersion equation determining 
w can be obtained from the neutrality condition 

~ei~f;dv = 0. 
j 

Using (1) and (2) we write this equation in the form 
( cf. [s]) 

We can carry out the integration over v 1; then 
foj depends only on Vz. We assume that foj is a 
Maxwellian at temperature Tj. 

We shall be interested in waves with phase ve
locity Vp = w/kz much greater than the ion thermal 
velocity Vi = ,.J 2Ti /mi but much smaller than the 
electron thermal velocity v e = ,.J 2 T e /me , i.e., 
kzVi « w « kzve. We also assume that l'e ~ kzve; 
consequently, if Ti ~ Te ion collisions can be neg
lected ~'i ~ ,.Jme/mi ve < kzVi « w. Under these 
conditions we can make an asymptotic expansion 
of the integrals with respect to velocity in Eq. (3); 
this equation then assumes the form 

1 kyc 1 dT, } 
+----fo -0 

2 eHkz T, dx e Vz=<»lkz- ' 
(4) 

where the values of the functions of velocity in the 
curly brackets are taken at the resonance point Vz 
= wkz. 

The wave frequency Re ( w ) is given by the real 
part of (4). If the inhomogeneity is small and if the 
ratio kz /ky appreciable it is evident that the waves 

are ion sound waves. As the ratio kz /ky is re
duced the ion sound waves go over continuously to 
drift waves, with velocity given by 

cT, dn 
W =kuVo = -ky-H -d , e n x 

(5) 

where v0 ~ Vipi/a is the drift velocity, Pi is the 
mean ion Larmor radius and 1/a = n-1dn/dx. 

When kz /ky < Pi I a the phase velocity of these 
waves along the magnetic field can be appreciably 
greater than the ion thermal velocity; consequently 
these waves are weakly damped even when the ion 
temperature is greater than the electron tempera
ture, that is to say, these drift waves can propa
gate even when ordinary ion sound waves do not. 
We note that the frequency of the drift waves given 
in (5) applies for the coordinate system in which 
the electric field disappears. In the coordinate 
system in which the ions are at rest the expression 
in (5) must be supplemented by the term 
-ky(c/eHn)d(nTi)/dx so that the wave frequency 
becomes 

Thus, when Te = const, Ti = const the wave fre
quency vanishes in the coordinate system that 
moves with the unperturbed drift velocity of the 
electrons Voe = - ( c/eHn) dp/dx where p 
= n(Te + Ti) is the plasma pressure. In other 
words the wave is at rest in the coordinate sys
tem that moves with the electrons. 

Assuming that the growth rate of the drift waves 
v = Im ( w ) is small compared with Re ( w ) , we have 
from (4) 

v {Te ofoe Te ofoi . ( 1 )} 
k- = :rr -a-;-+-& -vzfoi +vzfoe 1-0 CJ. 

yvo me vz mi vz .:.. Uz=Vp 

kyvove (1- ex) 

k;v; 

wher Vp = w/kz = kyv0 /kz is the phase velocity 
of the wave and a= d ln T/d ln n. 

We assume that the electron velocity distribu
tion in Vz is Maxwellian and shifted with respect 
to the ions by an amount u0 « v e· We then have 
from (6) 

v f rt { V; ( 1 ) T, + T; , '')} -k- =-. - U0 - -2 CJ.Vp --T-.- Vpexp (- V~Wi 
yvo vl ve z 

kyvove (1- ex) 

k;v; 

(6) 

(7) 

We now consider this expression in somewhat 
greater detail. The first term in the curly brackets 
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corresponds to the electron Landau damping. It is 
evident that this term vanishes when u0 = 0 and the 
temperature is constant ( a = 0). This is a result 
of the fact that the wave is at rest in the coordinate 
system that moves with the electrons. 

When a > 0, as is usually the case, the first 
term causes excitation ( v > 0 ) only in the pres
ence of a directed electron velocity u0• Since this 
term contains the small factor vi/Ve ~ 10-2, an 
instability arises only when the phase velocity of 
the wave along the magnetic field is appreciably 
greater than the ion thermal velocity, in which 
case the wave damping on the ions is exponentially 
small. When a~ 1 and Ti ~ Te the minimum 
value of the expression in the curly brackets (as 
a function of Vp) is reached when Vp l'::j 3vi so that 
oscillations can be excited only when u0 > avp/2 
l'::j 1.5via. 

When a< 1 the electron-ion collisions, given 
by the last term in (6), contribute additional damp
ing; this damping becomes important (compared 
with the first term) only when i\.ekz < 1, where 
i\.e = velve is the mean free path of the electrons. 
When i\.ekz > 1 collisions are unimportant and the 
possibility of wave excitation is determined by the 
collisionless wave-particle interaction. 

3. TURBULENT DIFFUSION 

We now examine the nonlinear motion of the 
plasma that arises as a consequence of the in
stability. We first consider the case in which 
electron collisions are rare enough so that they 
need not be considered in the expression for the 
growth rate, but frequent enough to maintain the 
original electron longitudinal velocity distribution. 

We start with small perturbations. As indicated 
above, the only perturbations that can grow are 
those whose phase velocities along z are greater 
than 3vi. To find the upper limit for the phase 
velocities for growing waves we consider the third 
term in (4). We have 

k {T e iJf oe ( 2v; ) } 
V = ll yVo --,- + fc6Vz 1-- , 

me uV2 V2 
e v2 =vp 

where we have taken a = 0 and neglected colli
sions and ion wave damping in the expression 
for v. 

(8) 

(9) 

If the electron distribution function is approxi
mated by a Maxwellian whose peak is shifted with 
respect to the peak of the ion distribution by an 
amount u0, (9) assumes the form 

-,;-- v0 ( 2v~) 
v = r n:ky v Uo- -2 ' 

e v, 
(10) 

where Vp = kyv0 /kz. It is thus obvious that the 
only growing waves are those for which vp < vm 
= (uov~ /2 )113• When u0 /ve « 1 the frequency of 
thes~ waves (8) is still very close to kyv 0• 

Smce the phase velocities of the growing waves 
are much smaller than Ve, to a first approxima
tion the electrons may be assumed to have a Boltz
mann distribution, that is to say, we can take the 
perturbation of the potential to be cp ~ Ten' /en 
where n' is the density perturbation. This pertur
bation, as has been noted above (and as can be 
shown by hydrodynamic methods ) is displaced in 
the y direction with the electron drift velocity v 0• 

If Landau damping is neglected perturbations of 
this kind can not cause diffusion: the electrons do 
not drift along the x axis since the electric field 
component along y is exactly balanced by the per
turbation of the pressure gradient, i.e., kyTen' 
- enkycp = 0; also, since the perturbation Ey is 
shifted in phase by an amount rr/2 with respect 
to the density perturbation the mean displacement 
of the ions along x, (n'cEy/H), also vanishes. 

When Landau damping is taken into account the 
electric field Ez acquires an additional component 
in phase with the density perturbation n'. It can 
be shown that with a directed electron current the 
number of electrons overtaking the wave ( conse
quently, capable of losing energy to the wave ) is 
greater than the number of electrons falling behind 
the wave. In other words, in the region in which 
n' > 0 there is a retarding field Ez while in the 
region characterized by n' < 0 there is an accel
erating field; hence, on the average the electrons 
are retarded by the wave. In an oblique wave, 
however, in addition to the field Ez there is a 
field Ey = Ezky /kz, which causes drift of charged 
particles across the magnetic field. With the ap
propriate sign of ky /kz this drift causes a growth 
of the initial perturbation, as in the current con
vective instability of the plasma in a positive 
column. [s, 1] 

This interpretation of nonlinear plasma motion 
can also be extended to a glow discharge. As al
ready indicated, all the perturbations we have con
sidered are essentially at rest in the coordinate 
system that moves with the electron drift velocity 
vo, i.e., the waves are purely aperiodic in this co
ordinate system [ Re ( w ) = 0 ] . It thus follows that 
perturbations with different wavelengths will main
tain their relative phase shifts over long periods 
of time and interact strongly with each other: the 
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density gradients of the large scale fluctuations 
then serve as a mechanism for the development 
of smaller scale fluctuations (due to the same 
instability) at other angles with respect to the 
magnetic field. Hence one expects that a broad 
fluctuation spectrum will develop in a plasma 
carrying a longitudinal current, that is to say, 
turbulent convection will arise. 

We now establish the qualitative nature of the 
fluctuation spectrum. Since the growth rate is 
proportional to the wave number ky the short
wave perturbations develop first and it may be 
assumed that the short-wave part of the spectrum 
reaches a steady-state. Since the longitudinal mo
tion of the ions can be neglected while the motion 
across the magnetic field with velocity v' = cH-2H 
x ['Yep- Ti'V(lnn)] is incompressible, the square 
of the density satisfies the continuity equation 

(11) 

This means that the quantity n' 2 is conserved 
in the breakup of the fine-scale local density fluc
tuations and that under steady-state conditions 
there is a steady transfer of density fluctuations 
in the spectrum. This transfer flow E can be writ
ten in the form E = n~2/TA. where TA_ is the lifetime 
of a fluctuation with transverse scale factor A. 
against breaking up into smaller fluctuations. The 
quantity 1/ TA. is evidently determined by the growth 
rate VA_' of the smaller scale fluctuations A.' times 
the fluctuations in the density gradient nx/A. of 
scale A.. The basic contribution to the damping of 
the fluctuations at n~ is due to perturbations char
acterized by A.' ~ A. while the growth rate VA_ is 
proportional to A. -t; hence, the condition that E 

the transfer flow of fluctuations in the spectrum 
be a constant can be written in the form E ~ n~3 /A. 2 

= const, when n~ ~ A. 2/3. 
It is thus evident that the amplitude of the fluc

tuations n~ increases with A., that is to say, the 
strongest fluctuations are those with the greatest 
scale length l. Furthermore, since the nonlinear 
interaction means that the large-scale fluctuations 
are rapidly transformed into small-scale fluctua
tions one ~xpects that even the fluctuations asso
ciated with the largest scale size n[ will be small 
compared with the mean density n while the scale 
size l itself will be small compared with the char
acteristic length a over which there is a signifi
cant change in mean density. Thus, we can write 
as an approximation 

where At is a numerical factor of order unity. 

We thus find the fluctuation of potential 

cp~ = A1 (T.Ie) (A. I a)'1•. (13) 

Fluctuations of the largest scale size l develop 
by virtue of the gradient in mean density. It is 
these fluctuations which make the largest contri
bution to the turbulent flow of plasma across the 
magnetic field q = (nzv[) where vz is the fluctua
tion in velocity on the largest scale l, which plays 
the role of a displacement length. Since fluctua
tions of the largest scale size develop in the gra
dient in mean density as a result of the interchange 
of tubes with plasma over a length of approximately 
l, the velocity fluctuation vz can be estimated to be 
vz R: l vz where vz is the growth rate for a perturba
tion of scale l. Thus, writing ky = 2rr/Z, we find 
q = - DT dn/ dx, where the coefficient of turbulent 
diffusion is given by 

Dr = AuoeT.Iv.eH. (14) 

Here, A = 2rr312 At ( Z/a )213 is a numerical factor 
of order unity (under the single assumption that 
l ~Io-ta). When u0 /ve ~ lo-t, as is usually the 
case, the diffusion coefficient given by (14) is of 
the same order as the Bohm coefficient DB 
= (1/ts)cTe/eH.Il2] 

4. EFFECT OF COLLISIONS 

The expression for the turbulent diffusion co
efficient given in (14) applies only when collisions 
are capable of restoring the electron distribution 
function but do not have an effect on wave damping. 
We now consider the effect of collisions on the dif
fusion coefficient in two limiting cases. 

At high collision rates we must consider the 
last term in the growth rate expression (7). Since 
this term increases rapidly as kz is reduced, the 
first waves to grow are those with the maximum 
possible kz, that is, phase velocities Vp· But, as 
we have indicated above, the phase velocity of the 
growing perturbations must be greater than KVi, 

where K is a numerical factor approximately equal 
to three; if this requirement is not satisfied there 
is strong ion damping. Taking this situation into 
account, assuming a = 0, and neglecting ion 
damping, we can write an approximate expres
sion for (7): 

(15) 

It is thus evident that an increase in ve leads 
to a reduction in the maximum scale size l ~ 2rr /kx 
~ 2rr /ky for which small perturbations can grow 
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( v > 0); consequently the diffusion coefficient is 
reduced and can be written approximately as DT 
= Z2vz. Determining l from the condition v- 0, 
we have 

where B is a numerical factor approximately equal 
to ten. The expression in (16) is BA.~ /a2 times 
greater than the classical diffusion coefficient De 
= Teve /me~~ (binary collisions) and reaches the 
order given by (14) when 

"A.p;/a2 > Av;T;/Bu0Te ~ I0-2• 

In other words, the anomalous diffusion effect 
considered here is of importance only in a low
density plasma, in which case A.e ~ a. 

We now consider the second limiting case, in 
which collisions are so rare that account must be 
taken of the effect of fluctuations of the electric 
field on the electron distribution function. The 
kinetic equation for the averaged electron distri
bution fe is of the form 

(17)* 

where E is the average field, Sej is the Landau 
collision term for electrons colliding with particles 
of type j 

Sej =- 2n:Le4 ~ ~ (' { '· (v) at, ~v')- fj (v') of. (v) \ ui3Y dv'' 
m. 13. y ovl'> J mi ovy m. ovy J (18) 

L is the Coulomb logarithm, Uf3y = (u2o{3y- Uf3Uy)/u3 

Uf3 = Vf3 -v~. The term SE on the right side of (17), 
which describes the wave-particle interaction, is 
given by 

where the angle brackets denote time averages. To 
find SE we must relate the fluctuations in the dis
tribution function fe and cp. Strictly speaking, 
since we are treating highly developed oscillations 
the relation between fe and cp is nonlinear. Quali
tatively, however, the effect can be described in 
the quasi-linear approximation (cf. [13 ]), that is, 
by taking account of quadratic terms only; this cor
responds to neglecting in (2) the deviation of the 
particle trajectory from a rectilinear trajectory 
because of drift in the fluctuating field. Expanding 
cp in a Fourier integral and taking account of (2) 
we obtain the following expression for the steady
state spectrum of drift waves 

*[v H] = v x H. 

S = ""Jte2 ~ ~ {k iJfoe + .5t_ iJfo•} k 
E ..::::.J m2 OV z iJv Q OX 13 

13 {> z e 

X <D0 (k) <'> (w- kuVo) II (w-k2Vz) dwdk, (19) 

where <I> 0( k) o ( w- kyvo) is the spectral function 
for the fluctuations of potential cp so that 

(<p (r, t) <p (0, 0)) = ~ e-irot+tkr <D0 (k) II (w - kuvo) dw dk. 
(20) 

We integrate (17) over transverse velocity v 1 
assuming that a Maxwellian distribution is main
tained in v 1· Then, the following expression is 
obtained for the electron-ion collision term in 
the region vi« Vz « Ve: 

(21) 

where we have neglected a term of order me /mi 
that takes account of heat exchange between elec
trons and ions. 

We now simplify the electron-electron collision 
term, approximating f0e(V') by a Maxwellian func
tion shifted by an amount us with respect to the 
ions (this simplification is valid because there are 
few resonance electrons ) . After integration over 
v' and v 1 we have 

Inasmuch as the only electrons that interact 
with waves are those whose longitudinal velocities 
lie in the relatively narrow range 3Vi < Vz < vm 
= ( u0v~ /2 )1/ 3 the term SE does not have a large 
effect on the longitudinal conductivity; hence the 
electric field Ez in (17) can be expressed in terms 
of the flow velocity of the electrons Us by means 
of the usual formula ( cf. [ 14 ]) 

Using this substitution, taking account of (19), (21), 
and (22), and carrying out a single integration over 
Vz, we reduce (17) to the form (a = 0) 

iJfoe me m.uo {()foe m,vz } 0 
au+ Vzrfo,----;y- foe+ F (vz) au+ T foe = · 

z e e z e (23) 

Here, u0 = 0.65 Us is the velocity at which the 
function foe reaches a maximum in the absence of 
oscillations (a more accurate calculation in [l5] 

gives u0 = 0.5 Us) while the function F(vz) is 

v. ~ 2 F (vz) = V kz<Do (k) II (kuVo- kzvz) dk. 
2 (Jt - 2 + Jt) e2Ln 

(24) 
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From (9) and (23) we find the growth rate for 
small oscillations taking account of the effect of 
waves on the electron longitudinal velocity distri
bution function: 

v 1 u0 - 2v~/v~ 
kyvo = y rw e 1 + F (up) • 

(25) 

As expected, the distortion of the electron dis
tribution function reduces the growth rate for small 
perturbations, thereby retarding the entire process 
of excitation and interaction of fluctuations. The 
quantitative influence of this effect on transverse 
diffusion can be seen by introducing ( 1 + F o) - 1 in 
(14) where F 0 is some mean value of the function 
F(vp). 

The value of F 0 for developed fluctuations can 
be estimated as follows. We first carry out the 
integration over kx in (24). Only those waves 
grow whose phase velocities lie in the range 3Vi 
< vp < vm = ( u0v~ /2) 113, in which the growth rate 
v does not change greatly with Vp, and to a first 
approximation we may assume that 4>o( ky, kz) 
(as a function of kz ) is constant and equal to 
4> 0 (ky/~kz) within the interval ~kz ~ kyvo/vm 
and zero outside this interval. With this assump
tion it is evident from (24) that F( Vp) is a de
creasing function of vp; that is to say, according 
to (25), when F(vp) > 1 the greatest growth rates 
will be those for waves with the greatest phase 
velocities Vp ~ vm. In other words, the mean 
value of the function F(vp) may be taken as 
F(vm ). Substituting Vz ~ Vm in (24) and carry
ing out the integration over kz we have 

(26) 

Here, the function 4> 0( ky), which is the spectral 
function of the transverse fluctuations, can, in ac
cordance with (13), be given in the form 

<Do (ku) = ~~ ( T: ) 2 (!:a) •;, · (27) 

where c 1 is a numerical factor of order unity. Sub
stituting this expression in (26) and carrying out 
the integration over ky between the limits 2rr/l 
~ 10 • 2rr/a and infinity, we have 

where C is a numerical factor of order unity. 
With Ti ~ Te and u0 ~ ve/10 we find F0 

~ 10-1A.epifa2 that is, when A.epi/a2 > 10 the 
diffusion coefficient must be F 0 times smaller 

(28) 

than the Bohm value. Thus, according to the mech-

anism considered here the turbulent diffusion coef
ficient must be of the order of the Bohm value if 
the parameter S = A.ePi /a2 lies in the range 10-2 

< s < 10. For values of S lying outside this range 
the diffusion coefficient can be appreciably smaller: 
for small values of A.e it falls off as A.~ and for 
large values of A.e as A-8 1• 

6. CONCLUSION 

The anomalous diffusion mechanism considered 
is based on only one kind of instability; hence, a 
comparison of the results obtained here with ex
perimental data would be premature since we have 
not evaluated other possibilities for explaining en
hanced diffusion. However, one must note the qual
itative agreement between a number of features of 
the anomalous diffusion considered here and the 
experimental data on plasma loss from the stella
rator. [2- 4] For example the fact that the instabil
ity considered here is associated with a longitudi
nal current and that it disappears if the directed 
velocity of the electrons Us ~ 2u0 < 3vid ln T/d ln n 
is in qualitative agreement with the experimental 
results given by Motley, [3] who showed that en
hanced diffusion occurs only in the presence of a 
longitudinal current and only when the directed 
electron velocity is of order Vi. Further support 
for this mechanism is indicated by the results of 
reference 4, in which it has been shown that plasma 
loss is described satisfactorily by the Bohm diffu
sion coefficient ( S = A.ePi I a 2 in these experiments 
varied approximately in the limits 10-2 < S < 10 
so that DT ~ DB in accordance with the estimate 
given above). However, in order to verify this 
turbulent convection mechanism it will be neces
sary to carry out experiments designed expressly 
for this purpose, in particular, investigation of 
the correlation functions for the fluctuations in 
the density and in the electric field. 
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