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Equations that follow from unitarity and analyticity are given for four-fermion contact inter
actions. The asymptotic behavior of the fermion-fermion and antifermion-fermion scattering 
amplitudes is investigated at high energies by means of these equations. It is shown that if a 
power law is assumed for the energy dependence of the amplitudes, no contradictions appear 
in the equations, in contrast to perturbation theory. A connection between the orders of 
growth nj of the vari?us amplitudes and the upper and lower bounds on the quantities nj has 
been established. 

1. INTRODUCTION 

LIKE any other nonrenormalizable interaction, 
the four-fermion interaction leads in perturbation 
theory to divergent expressions such that the order 
of divergence for large momenta increases with 
the order of the diagram. The use of unitarity and 
analyticity yields equations [t-4] for the scattering 
amplitudes of arbitrary particles (more precisely, 
for the partial wave amplitudes or for the spectral 
functions). Such equations have been obtained for 
some renormalizable interactions ( 1r- 1r, K- 1r, 

1r- N, N- N, etc) and it is evident that the itera
tion of these equations with respect to the coupling 
constant leads to the usual perturbation theory 
series. No such equations have been written down 
for nonrenormalizable theories. It is evident that 
the iteration of such equations would lead to ex
pressions that diverge for large energies, so that 
the number of subtractions to be introduced in 
each order would increase. 

In the present paper we analyze the behavior of 
the amplitudes for four-fermion interactions at 
large energies by means of a method proposed by 
Gribov [5]. This calls for the knowledge of equa
tions which express the spectral functions of the 
amplitudes in terms of the absorptive parts of 
these amplitudes. We show that, in contrast to 
perturbation theory, no contradictions appear in 
our equations at large energies. Namely, if we 
assume that the amplitudes increase at infinity as 
some power of the energy, then the equations are 
satisfied and a connection exists between the or
ders of growth of the five independent (scalar, 
vector, etc) amplitudes. 

The very form of the equations and the condition 
that the partial wave amplitudes be bounded imply 
rigid limits between which the growth indices nj 
must be situated: 0:::::: ns, np :::::: 1 and -1:::::: nv, 

n· nT, nA:::::: 0, Aj ( s, t) ~ s J. If the scattering cross 

section is constant, then ns = np = 1, nv = nT = 0, 
and -1 :::::: nA:::::: 0. Moreover, the equations imply 
that the fermion-antifermion scattering amplitudes 
have the same behavior at large energies as the 
amplitudes for fermion-fermion scattering. 

For the sake of simplicity we assume here that 
the masses of all fermions are equal and that 
parity is conserved. 

2. DEFINITION OF THE INVARIANT AMPLI
TUDES AND THE UNITARITY RELATION 

We define the transition amplitude Df3a in the 
same manner as has been done for the nucleon
nucleon scattering amplitude in the paper by Amati, 
Leader, and Vitale [s] 

Sfla. = 61la. + i6<4> (p13 - Pa.) Df!a.· 

The function Df3a is related to the covariant 
Feynman amplitude through the relation 

(1) 

(2) 

where E is the energy of the particle in the center 
of mass system (c.m.s.). The cross section is ex
pressed in terms of M[3a 

da/dQ = I m2Mf3a./4n£ 12 • (3) 

The unitarity relation for the amplitudes M{3a 
has in the two-particle approximation the form 

1184 



INVESTIGATION OF THE FOUR-FERMION INTERACTION 1185 

· + M ) m•p (' dQ M+ M 
l (M~"- ~" = 2n£.) 4:rt lh '~"' (4) 

where p is the c.m.s. momentum. 
Corresponding to the five usual types of four

fermion interaction are five invariant amplitudes 
in terms of which one can expand M[3a· There 
exist many possibilities for choosing the Fermi 
amplitudes or their linear combinations Ft (cf. 
for example the paper by Goldberger et al LT]). We 
use the Fermi amplitudes proper. Then 

M13" = ~A1 (s, t, t) <I' I 01ll) <2' I 0112>, 
j 

j = S, V, T, A, P, 

and, for instance, 

(1' I Or 11> <2' I Or 12> = t (u'cr~'-v u) (;cr~'-v v). 

(5) 

The amplitudes Ai and Fi are linear combinations 
of each other and therefore all relations for the 
A i can be easily rewritten in terms of the Fi. 

The amplitude Mf3 01 describes both the scatter
ing of a fermion on a fermion and the scattering of 
a fermion on an antifermion. For the first process: 

Pt + n1 -+ P2 + n2, 
I - - -

M~"' =~A (s, t, t) (u (p 2) 01u (P 1)) (u (n2) Oiu (n1)), 

j 

s = - (Pt + nt)•' t = - (nt - n2)2' 

Substituting Eq. (9) into the right hand side of Eq. 
( 8) we obtain an expression of the form 

(' dQ [u (p2) 0 1v (- p1)][(v (- n2) Oku (n1 )] I 
Qlk = .\ 4:rt (c;' _ s') (a"_ s") lh • (10) 

In Eq. (10) it is necessary to carry out the inte
gration and then expand the matrix element of the 
resulting expression between spinor eigenstates in 
terms of the five Fermi invariants. It is then nec
essary to continue ( 8) in s (or t) and calculate the 
discontinuity in this variable. As a result of these 
operations, one obtains the equations 

A'• __ ___!___-.It- 4m2 ___!___('(' dz1 dz2 

- 4:rt V t :rt• .\.\ Vz2 + z2 + z2 - 2zz z - 1 
1 2 1 2 

X {A~k (- z1, z2) Re (A~·A~) + A~k (z1, - z2) 

X Re (A;· (z1) A: (z2))}, (11) 

A'l __ ___!__ -. It - 4m2 ___!___ (' \ dz1 dz2 

- 4:rt V t :rt• .) • Vz 2 + z2 + z2 - 2zz z - 1 
1 2 1 2 

x {A~, (z1, z2) Re (Ar (z1) A: (z.)) + A~k (- z1, - z2) 

x Re !A;· (z1) A: (zJ I} ; 

z = 1 + 2s I (t - 4m2), z = 1 + 27 I (t- 4m2). (12) 

We give here the coefficients Afk with the 
strongest asymptotic behavior as z - oo and Zt, 
z2- oo: 

(6) A~r. Atr, A~r~ z; A~ A, A~ A, At A, A~ A, A:p ~ Z1 ; 

For fermion-antifermion scattering (the third 
reaction channel): 

n1 + n2 _. Pt + P2• 
- I - - -
M13" =~A (s, t, t) (u (P2) 01v (- P1)) (v (- n2) 01 u (nt)), 

j 

t = - (n1 + n2)2, s = - (n1 - P1)2, 

7 = - (n1- P2)2. (7) 

The unitarity relation for the third channel has the 
form 

~ lm A 1 (s, t, f) [u (p2) 01v (- P1)] [v (- nJ Oiu (n1)1 
j 

X A1' (s', t' )')A k (s", t", f') ftk, 

One can use the following dispersion relation for 
the Aj 

i - __ 1_ f A{ (t, C>J dr; ___!___ C A~ (c;, t) de; 
A (s, t, t)- :rt .l 6 _ 5 + :rt .\ 6 _ t 

4m 2 4m1 

(9) 

A~v. Afv, Afr ~ Z2 ; Mv, A~r, ACv ~ (zi + z~) I z. 
The other coefficients either remain constant or 
decrease as z, Zt, z2 - oc, 

3. ASYMPTOTIC BEHAVIOR OF THE 
AMPLITUDES 

The integrals in (11) and (12) are of the form 

p (z, f)= vt -14m2 ~~ 2 dzt:ZzF ;Zt, Z2, t) . (13) 
z,z, Vz + z1 + z2 + 2zz1z2 -1 

Here z0 = 1 + 8m2/( t- 4m2 ); the upper limit of 
integration corresponds to the vanishing of the ex
pression under the square root. An expression of 
this kind has been investigated in Gribov's paper[5J; 
the difference in our case is that we deal with a 
system of equations and that the coefficients Alk 
depend on z, Zt> and z2• 

By means of a simple change of variables the 
integral (13) reduces to the form 

-- 1 

(z t) = -. It - 4m2 (' rdr 
p' V t .\_V1-r2 v2Z. 

A-<p, Z~l 
x ~ F (r ch (<p +A.), r ch (<p- A.), t) d<p; 

-A+'I>o 
(14)* 

*ch = cosh; Arch = cosh_,. 
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Z1 = r ch (<p + /..), z2 = r ch (<p- f..}, 

f..= Arch Y(z + 1) I 2, <p0 = Arch (zofr) . 

It is convenient to investigate the asymptotic 
behavior of p ( z, t) by making use of a simpler 
formula, which is derived from Eq. (14) when 
z » 1 and when the integrand does not decrease 
faster than z11 or z21: 

-. j t _ 4m• \ rdr 
P (z, t) ~ v-~- ~ V1- ,. 

0 

From Eq. (15) it is imFediately clear that if 
FIZt, Z2; t),..., Ct(t) Ztzf(l, m ~ 1), 

(zt, Z>m 
p (z, t) ~C2 (t) ~ zm, m > l, (16) 

t zl In z, l = m. 

If 1, m. < -1, nevertheless, 

p (z, t) ~C3 (t) z-1 • (17) 

Furthermore, it is easy to see from (13) that if 
F( z1, z2, t) does not change sign in the domain of 
integration, then 

I P (z, t) I > C!z. (18) 

Suppose now that Aj ( s, t, t) admits the follow
ing representation: 

A{ (s, 7, t) ~ z11lfi (t), 

A' (s, t, t) ~ --znqi (t). 

(19) 

(20) 

Substituting (19) and (20) into (11) and (12), we can 
derive the asymptotic form of A~t a~d A~2 • On the 
other hand, the order of growth of A~1 must b~ 
less than or equal to the order <?f growth. of A{, 
i.e., n1· (the same is true for AJ and AJ, respec-

32 2 
tively). 

Neglecting logarithmic behavior everywhere, 
we obtain finally a series of inequalities (the 
equalities arise from superpositions of several 
inequalities) 

nP > ns· (21) 

The first equality in (21) implies that the fermion
antifermion scattering cross section has the same 
behavior with increasing energy as the fermion
fermion cross section. However the coefficients 
of the corresponding powers of the energy can be 
different in the two cases. 

We are now in a position to derive upper and 
lower bounds for the nj. The lower bound can be 
found with the aid of the inequality (18). From (11) 
and (12) we obtain 

(22) 

Before determining the upper bound, we intro
duce helicity amplitudes [s,7]. There are five inde
pendent amplitudes ( ± % indicates the projection 
of spin on the corresponding momentum direction): 

4n:E<p1 = 4l1E < + + + + I <p I + + + + > 
= + m2 (1 + x) (As+ Av + Ar + AA) 

+ 2 (p2Av -E2AA -m2Ar); (23) 

4l1E<p2 = 41tE < + + + + I <p I - + - } > = 2 (£2 + p2) AT 

+ 2m2AA + + (x- 1) [£2As + m2Av + (£2 + p2)Ar 

+ m2AB + P2Ap), (24) 

4n:E<ps = 4n:E < + + - ! I <p I + +-+ > 
= cos2 (e/2) {m2 (As+ Ar) + (£2 + p2) (Av + AA)} , 

(25) 

4n:E<p4 = 4n£ < + + - t I <p 1-+ + + > 
= sin2 (9/2) {As£2 + m2 (Av + AA + Ar)- p2Ap}, (26) 

4l't<p• = 4l1 < + + + +I <p l + + -+ > 
=-! msine {As +Av +Ar +AA}; 

X= COS9, (27) 

The cpj are simply related to the cross section: 

Im <!J1 (e = O) = pai+ 1 4l1, 

Im<pa(O)=pai_/4l1; (28) 

! Im [<p1 (0) + <p8 (0)1 = par/41t, (29) 

where a'!:. denotes, for instance, the total interac
tion cross section for fermions with their spins 
along the initial momenta and aT denotes the total 
cross section, averaged with respect to spins. 

The S-wave amplitude ey = exp ( ioJ) sin OJ 
can also be expressed in terms of the cpj: 

1 

fo = + ~ (<pl -<p2) PI(x) dx 
-1 

0 

= 2~ ~ (<p1-<pJP1(1 + 2;.)dt. (30) 
4mL-s 

We put .J = 0 in this expression and assume that 
in integrating with respect to t the essential con
tribution comes from a region in which cp 1 - cp 2 
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can be factored into a product of a function depend
ing only on t and a function depending only on s. 
If, for example, the essential contribution in the 
integral (30), comes for any large s from a finite 
domain of values for t, we can always use for 
CfJt- cp 2 a representation of the form (19)-(20). 
Then the boundedness of f~ leads to the conclusion 
that <Pt - cp 2 does not increase faster than p for 
fixed t. 

From (23) and (24) it follows then, that ns. np 
:::; 1 and nA:::; 0. This, together with (22), implies 
the following bounds: 

The nJ are related here by the inequalities (21). 
Diffraction scattering corresponds to the case 

when aT and dajldtlt=o become constant as 
s - 00• Equation (28) then allows us to arrive at 
the conclusion that in this case ns = np = 1, nv 
= nT = 0, and -1 :::; nA :::; 0. 

The asymptotic expression for the amplitudes 
<Pj (for fixed t) is 

(31) 

From the definition of c,o 2, c,o 3, c,o 5 it follows that 

these amplitudes describe spin flip scattering for 
one or both particles (in the small angle limit). 
One can see that as E - oo c,o 2 and c,o 4 are of the 
same order as c,o 1 and c,o 3 and therefore the rela
tive contribution of the spin flip processes remains 
constant in the high energy limit. 

The author expresses his deep gratitude to K. A. 
Ter-Martirosyan for valuable advice and constant 
interest in this work. 
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