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It is shown that when longitudinal ultrasonic waves of sufficient intensity (alternating pres­
sures of the order of 1 atm) are propagated in solids, the originally sinusoidal wave becomes 
distorted. The second harmonic increases with the distance from the radiator, passes through 
a maximum, and then decreases owing to dissipative losses, as in the case of propagation of 
finite-amplitude elastic waves in liquids. The distortion is mainly due to the asymmetry of 
the potential well, i.e., the nonlinearity of the molecular interaction which leads to anharmo­
nicity of the lattice. By measuring the ratio of the pressure amplitudes of the second har­
monic and the fundamental frequency we can determine the ratio of the coefficients of the 
quadratic and linear terms in the equation of state of the solid. This ratio which is measured 
here dynamically using the distortion of the waveform, agrees quite well with the ratio ob­
tained from static measurements under hydrostatic pressure. 

1. INTRODUCTION 

NoNLINEAR phenomena occurring when strong 
ultrasonic waves are propagated in gases and 
liquids have been studied quite intensively. Owing 
to the nonlinearity of the equations of motion and 
of the equation of state of gases and liquids, a 
weak periodic shock wave may form under some 
conditions, nonlinear interaction of finite-ampli­
tude waves may occur, combination frequencies 
may appear, and other nonlinear phenomena may 
be observed (see, for example, [iJ). 

There has not yet been a single serious attempt 
to find similar nonlinear effects for solids, and 
the authors are not aware of any work reporting 
observations of such effects. 

The authors have briefly reported[2J that non­
linear phenomena in solids with low attenuation of 
ultrasonic waves are quite strong, owing to a char­
acteristic cumulative effect with the same mecha­
nism as in gases and liquids, even for longitudinal 
ultrasonic waves of low intensity. Later it was 
shown [3] that such effects are mainly due to the 
asymmetry of the potential well, i.e., due to the 
nonlinearity of the intermolecular interaction 
which leads to anharmonic properties of the crys­
tal lattice. In the present paper we shall give a 
more detailed description of the experimental re­
sults for the propagation of finite-amplitude ultra­
sonic waves in solids, and shall show that by meas­
uring the ratio of the pressure amplitudes of the 
second harmonic and the fundamental frequency 

we can determine the ratio of the coefficients of 
the quadratic and linear terms in the equation of 
state for a solid; this ratio is in good agreement 
with the ratio obtained from static measurements 
of the hydrostatic compressibility reported in 
numerous papers by Bridgman and his followers. 

2. EXPERIMENTAL APPARATUS AND METHOD 
OF MEASURING THE SECOND HARMONIC 

A spectroscopic method was used to determine 
the harmonics of a finite-amplitude elastic wave; 
the harmonics were selected using resonance 
piezoelectric transducers and a resonance ampli­
fier. This method is very sensitive to small dis­
tortions of the waveform; it permits measurement 
of the pressure amplitude of the second harmonic 
down to several hundredths of one per cent of the 
fundamental-frequency amplitude. 

The experimental apparatus is in principle very 
simple. A square-wave generator modulates a 
radio-frequency oscillator and triggers simultane­
ously an oscilloscope sweep. Radio pulses with a 
carrier frequency of 5 Me are applied to an X-cut 
quartz plate with the same natural frequency; the 
silvered part of this plate is 16 mm in diameter. 
Acoustical contact with the polished end of the test 
rod of 16 mm diameter is obtained via a thin layer 
of transformer oil. A quartz receiver plate of 10 
Me natural frequency is located at the other end of 
the test rod. The voltage from the receiver plate 
is applied to a band-elimination filter tuned to the 
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fundamental frequency of 5 Me. This filter attenu­
ates the 5 Me fundamental frequency by a factor of 
150-200 without affecting greatly the 10 Me signal. 
From the band-elimination filter the voltage is ap­
plied to the input of a resonance amplifier with a 
gain of the order of 103 (at the 10 Me frequency) 
and the signal from the amplifier output is fed to 
a cathode-ray oscilloscope. The pulse method is 
used to avoid the effect of standing waves; the pulse 
duration is 10-50 JJ.Sec, the repetition frequency is 
0.2-1 kc. 

The experiments showed that apart from the 
5 Me fundamental frequency there was also a sig­
nal at 10 Me (the second harmonic). A series of 
control experiments proved that the second har­
monic was not due to secondary effects (overload­
ing of the amplifier by the fundamental-frequency 
signal, nonlinear distortion factor of the generator, 
etc.) but was the result of waveform distortion 
during propagation in the solid. The increase of 
amplitude of the second harmonic with distance 
from the radiator is an even more convincing 
proof of the presence of nonlinear effects in solids. 

Figure 1 gives the dependence of the voltage 
amplitude of the second harmonic (which is pro­
portional to the acoustic pressure produced by this 
harmonic ) on the distance from a radiator for the 
magnesium-aluminum alloy MA-8 1> when the volt­
age across the quartz radiator was 1000 V (peak 
value); the second-harmonic amplitude was ob­
tained from the first of the reflected pulses for 
rods of various lengths (with the other experimen­
tal conditions unchanged), and from the second and 
third pulses in the case of rods of 30 and 45 em 
length. The curve in Fig. 1 shows that the ampli­
tude of the second harmonic gradually increases, 
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FIG. 1. Dependence of the pressure amplitude (the voltage 
V2 on the receiver plate, in mV) of the second harmonic (10 Me) 
on the distance from the radiator in the alloy MA-8 with 1000 V 
(peak) across the radiator: 0- from the amplitude of the first 
pulse for rods of various lengths; •- from the second and 
third pulses for a rod of 30 em length; &-from the second and 
third pulses for a rod of 45 em length. 

1)The alloy MA-8 has sufficient uniformity and a small 
absorption coefficient for ultrasound ( 4-5 dB/ m at 5 Me). 

reaches a maximum at a distance of 35 em (the 
stabilization distance), and then decreases, owing 
to dissipation of its energy. Measurements have 
shown that at the maximum (at the stabilization 
distance) the second-harmonic amplitude amounts 
to 2% of the fundamental-frequency amplitude. A 
similar curve was obtained for the behavior of the 
second harmonic in duraluminum rods. 

The nature of the dependence of the second har­
monic on distance shows that a nonexponential 
series of reflected pulses should be observed in 
sufficiently short samples (samples of lengths 
which are considerably smaller than the stabili­
zation distance Lst of the second harmonic). This 
did !n fact occur. Figure 2 shows a photograph of 
a series of 10-Mc pulses (for a fundamental fre­
quency of 5 Me) in an MA-8 alloy rod of 7.5 em 
length and 16 mm diameter (the peak voltage 
across the radiator was 1000 V). The envelope 
of the reflected pulses is affected somewhat by 
the lack of parallelism of the rod ends and by the 
nonuniformity of contact with the receiver. A check 
of this effect was obtained by applying small-am­
plitude pulses of 10 Me carrier frequency to the 
same sample and recording them with the same 
receiver. The oscilloscope screen then showed, 
as usual, a series of pulses decreasing exponen­
tially in amplitude (Fig. 3). 

Figure 2 shows that the third pulse, which trav­
eled a distance of 37.5 em, had the maximum am­
plitude. This result is in good agreement with the 
stabilization distance determined from measure­
ment of the first pulse in samples of various length 
(Fig. 1). 

3. DETERMINATION OF NONLINEAR CORREC­
TIONS TO HOOKE'S LAW FROM THE WAVE­
FORM DISTORTION 

From the macroscopic point of view the cause 
of the formation of harmonics in a wave of finite 
amplitude is the nonlinearity of the equation of 
state of the solid and the geometrical character­
istics of finite deformations. Mathematically the 
first effect leads to the appearance of terms con­
taining cubes of the deformation tensor compo­
nents Uik· in addition to squares of these compo­
nents, in the expression for the elastic energy E 
per unit volume of an isotropic solid. This ex­
pression has the form [4] 

E 2 (1 K 1 ) 2 , 1 A = f-lUik + 2 - 3 f-l Uu -t- 3 Utk Uit Ukt 

B 2 1 c 3 + Uik Uu + 3 Uu. (1) 

Here JJ. is the shear modulus, K is the bulk modu-
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lus for hydrostatic compression, and A, B, C are 
some scalar coefficients 2>. 

The second effect is of the nature of a "geomet­
rical nonlinearity," manifesting itself by a nonlin­
ear relationship between the deformation tensor 
components Uik and the derivatives of the defor­
mation vector components ui with respect to the 
coordinates Xk: 

. - 1 (au,. auk auf auf) 
U,k - 2 axk + ax,. + ax,. axk • (2) 

In the case of deformation by unidirectional com­
pression and dilatation 3> along the x axis, which 
occurs when a plane longitudinal wave is propa­
gated along the x direction, we have 

u; (x, t) + 0, Uy = Uz = 0, (3) 

and consequently among all the deformation tensor 
components only uxx ;r. 0. Using the conditions in 
Eq. (3) we can obtain an expression for the "stress" 
axx 4>: 

2>As usual, the double repeated subscripts denote summa­
tion over values 1, 2 and 3. 

3lThe unidirectional compressional (dilatational) deforma­
tion means the compression (dilatation) of a rod whose lateral 
surfaces do not move. 

4>Strictly speaking the quantity axx defined in this way is 
not a stress; this is related to the difference of the coordin­
ates of points in a body before and after deformation.(•] 

FIG. 2. Series of second-harmonic (10 Me) pulses arising 
and then decaying in amplitude in an MA-8 rod of 7.5 em 
length. The voltage across the radiator (5 Me) was 1000 V 
(peak). 

FIG. 3. Series of pulses exponentially decaying in ampli­
tude for the same sample as in Fig. 2 but when 30 V were 
applied to a radiator plate with a natural frequency of 10 Me; 
the signal was received using a plate with the same natural 
frequency 10 Me. 

aE _ aux , (aux)2 ( ) 
Gxx = a(auxfax) -~ax+ r ax. 4 

~ = K + ~ f!, r' = r + 3~, r =A + 3B + c. 
(5) 

The nonlinear coefficient y' consists of two 
components: a coefficient y corresponding to the 
nonlinearity of the equation of state (the "physical 
nonlinearity," according to [5]) and a coefficient 
3{3 which allows for the "geometrical nonlinearity." 

As will be shown later, we are interested in the 
ratio of the coefficient y (which we shall call the 
nonlinear coefficient) and the coefficient in front 
of the linear term in Eq. (4) (the linear coefficient): 

r/~ =(A+ 3B + C)/(K ++I!>· (6) 

This ratio (and therefore the coefficient y, be­
cause {3 is known) can be found from measurements 
of the second-harmonic amplitude. The equation of 
motion for a plane longitudinal wave in an isotropic 
medium without allowance for dissipation and in­
cluding quadratic terms has the form [S] 

where Po is the density of the undeformed body, 
and 

The solution of the equation of motion shows 
that the originally sinusoidal wave becomes dis-

(7) 
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torted upon propagation and the pressure ampli­
tude of the second harmonic is given by 

n =- (% + r/~). (9) 

where w is the angular frequency, Poi is the pres­
sure amplitude of the fundamental frequency at the 
radiator, x is the distance from the radiator, and 
cz is the velocity of propagation of longitudinal 
waves in an infinite medium. 

Using the value of n in Eq. (9) we find that 

..r_ _ [2Pocr P2 3 J 
~ - - ffiPo1X Pol + 2 • (10) 

The above formula applies, strictly speaking, to 
media where there is no dissipation of energy. 
However, it can be used for dissipative media 
over small distances (smaller than the stabili­
zation distance) such that the attenuation is still 
small. Thus, by measuring the ratio of the ampli­
tudes of the second harmonic and the fundamental 
frequency at a distance shorter than the stabiliza­
tion distance, we can determine y/(J. The value 
of Poi can be calculated by finding the intensity of 
radiation from a piezoelectric quartz plate with a 
given radio-frequency voltage applied to it. This 
intensity was found from the formula for the ra­
diation from one side of a piezoelectric quartz 
plate [7] (this corresponds to the structure of the 
contact between the plate and the sample). This 
formula has been checked experimentally for 
liquids; although its applicability to radiation in 
a solid is self-evident, the numerical coefficient 
in the formula may be somewhat different 5>. With 
a peak voltage of 1000 V across a quartz plate the 
alternating 5-Mc pressures amount, according to 
this calculation, to ± 6 atm for a single crystal of 
aluminum. 

The results of measurements of the ratio y/(J 
for some cubic single crystals and for the alloy 
MA-8, obtained using Eq. (10) with the measured 
values of p2 /p01 substituted and from the formula 
for the intensity of radiation Poi from one side of 
a piezoelectric plate, are listed in the table. 

From experimental measurements of the sec­
ond harmonic in a plane longitudinal elastic wave 
we obtain, according to Eq. (6), the nonlinear co­
efficient y, which is a linear combination of three 
(for an isotropic body) nonlinear coefficients A, 
B, C. For cubic crystals there are, in general, 
six coefficients in Hooke's law for quadratic de­
formations. 

5lWe are now investigating this problem. 

Ratios of the nonlinear and 
linear coefficients in Hooke's 

law found from measurements of 
the waveform distortion ( y I (J) 

and from measurements of 
hydrostatic compressibility 

( ytff3t> 

Solid 1-·rf~ I 
-y,;~, 

AI (single crystal) 7 6.9 
NaCI 9 7.4 
KCI ti c ·'-' 6.2 
LiF ti.5 R.7 

Magnesium-aluminum 
alloy MA-8 4.3 

Note. In single crystals the direction of 
wave propagation coincided with the crys­
tallographic axis. 

4. COMPARISON WITH BRIDGMAN'S DATA 

In order to compare our dynamically obtained 
values of y/(J with the results of Bridgman's 
static measurements, we must bear the following 
in mind. 

It is known that the relationship between stress 
and deformation depends strongly, even in the 
first approximation, on the conditions at lateral 
surfaces; consequently the coefficient of the quad­
ratic term depends on the type of deformation. 
From our experiments one can determine the non­
linear coefficient y for the case of unidirectional 
compression-dilatation; this type of deformation 
occurs upon propagation of a plane longitudinal 
wave in an infinite medium, represented in our 
case by the rod whose transverse dimensions are 
considerably greater than the wavelength. 

On the other hand Bridgman et al investigated 
the behavior of solids under uniform omnidirec­
tional (hydrostatic) compression. BridgmanCB,9] 
showed that for the majority of solids at pressures 
P up to several tens of thousands of atmospheres 
the dependence of the relative change of volume on 
the pressure under uniform hydrostatic compres­
sion is satisfactorily given by the formula 

(11) 

where a and b are temperature-dependent co­
efficients characteristic of a given substance; 
a= 1/K. 

In the case of linear deformation under uniform 
hydrostatic compression we obtain the formula, ac­
curate to the quadratic term 

(12) 
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where D.l/lo is the relative change of length, {31 is 
the linear coefficient, Yt is the nonlinear coefficient 
for this type of deformation, and 

rdf31 =- (3bja2 - 1). (13) 

The table lists values of y1 /{31 calculated from 
the data of Bridgman and Slater for coefficients 
a and b taken from [to]. 

We cannot expect better agreement between 
y/{3 and ytf{31 than that in the table because the 
natures of the deformations in our case and in 
Bridgman's case were different. 

Moreover, the precision of the measurements 
of y I {3 was not high, bearing in mind that we used 
a formula for the radiation from one side of a 
piezoelectric quartz plate into a solid to calculate 
p01 ; the error, according to our estimates, amounted 
to 20-30%. Increase of the accuracy of measure­
ment and the possibility of three independent ex­
periments should allow us in future to determine 
separately the three coefficients A, B, and C for 
an isotropic body. 

In the case of liquids, measurement of the 
ratio of the nonlinear coefficient B/2 in the equa­
tion of state for liquids and the linear coefficient 
A (analogous to our y/{3) by a dynamic method 
(from nonlinear distortions of the elastic wave­
form) and by a static method gave results which 
in general agreed satisfactorily (see [tJ), as they 
did in our case for solids. 

5. CONCLUDING REMARKS 

The table lists the values of y/{3 for solids in 
which attenuation is weak and the stabilization dis­
tance sufficiently large. For solids with stronger 
attenuation we can only indicate the per cent con­
tent of the second harmonic taken with respect to 
the first at some distance from the radiator. Thus, 
for a Plexiglas rod at a distance of 5 em from the 
radiator this ratio amounts to 0.2% (because of 
strong absorption of sound at Lst < 5 em in Plexi­
glas ) while for polystyrene at the same distance 
this ratio is 5%. An even higher ratio is obtained 
for a slab of 45° X-cut Rochelle salt (for an ultra­
sonic wave propagated at right angles to the X 
axis). In solids with strong nonlinearity (polysty­
rene, Rochelle salt, etc.) the third harmonic is 
easily observed. When two longitudinal waves of 
different frequency are propagated simultaneously 

along the same direction, combination (sum and 
difference) frequencies are observed, i.e., there 
is parallel interaction. 

So far we have studied in detail only one type 
of nonlinear interaction for the case of longitudinal 
waves (distortion of the waveform ) . However, 
other types of interaction connected with transverse 
waves are possible; we are at present investigating 
them. The notion of phonon-phonon interactions 
(or nonlinear interactions of elastic waves in 
solids) has been, following Debye, very widely 
used as the basis of theories of various transport 
phenomena (including, for example, the absorption 
of sound in ideal crystals) and is among the prin­
cipal ideas of solid-state physics. However, as 
far as we know, there has not yet been any direct 
experimental proofs of the occurrence of such in­
teractions. For this reason the proof of the exist­
ence of nonlinear interactions of elastic waves in 
solids (so far for longitudinal waves at ultrasonic 
frequencies only) is of interest and the technique 
developed here can be used for further studies in 
the same field. 

Concluding, the authors express their gratitude 
to L. K. Zarembo for valuable discussions. 
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