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L/K = 6, and K = 0. 9 [9], which yields as a result 
b0 = 2.56. The cross section (6) should be aver
aged over the neutrino spectrum Pv< E) from the 
reactor. Assuming as a lower estimate 2> Pv(E) 
~ Pe( E) and taking Pe( E) as given by Carter et 
al [S], we obtain 

00 

o' (LF) > ~ Pe (£) o (£) dE;::::; 2 · 1 CJ-42 cm2. (7) 
11£ 

(For the reaction ii + p- e+ + n, the cross sec
tion for neutrinos from a reactor is 6. 7 x 10-43 

cm2 .) It must be noted that the excited nuclei 
during the process (3) will, generally speaking, 
be polarized in the direction of motion of th~ anti
neutrino, so that the succeeding gamma radiation 
will also have definite polarization properties. In 
principle, this fact could be used to separate the 
process (3) from the background. 

We note that the interaction (1) which we use 
follows from the Bludman scheme, which presup
poses the identity of the muon and the electron 
neutrino. It is not difficult to generalize the Blud
man scheme to include the case vp, ;.o ve. In this 
case the interaction constant in the product of the 
neutral currents (1) turns out to be equal to G/2, 
and the cross sections given above are decreased 
to one-quarter. At the same time, the process 
ve + e - ve + e arises, which is forbidden by the 
Bludman sc~.eme (see also [5]), but unlike the 
Feynman-Gell-Mann scheme it should be charac
terized by a constant G//2 (and not G). Analo
gously, the process vp, + ~ - vp, + e should have 
a constant - G/2. From this point of view, it is 
quite interesting to study experimentally the scat
tering v + e - v + e both on reactor neutrinos 
and on neutrinos from the decay 1r- p, + v. 

In conclusion, the authors are deeply grateful 
to V. V. Belashov, B. M. Pontecorvo, and R. M. 
Sulyaev for a valuable discussion. 

1>Staff member of the Institute of Nuclear Physics, Moscow 
State University. 

2)It follows from [ 8] that in the region Ev 2: 1 MeV the value 
of Pv(E) can exceed Pe(E) by about 1.5 times. 
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IT has become clear recently that the asymptotic 
behavior of the amplitudes A( s, t) for the transi
tion of two particles into two particles at high en
ergies and at fixed momentum transfer t is gov'"" 
erned by the singularities of the partial wave am
plitudes fz(t) as a function of the angular momen
tum l in the channel where t is the energy. [i- 5] 

If the singularity of fz ( t) farthest to the right is 
a Regge pole at l = l ( t) then the invariant ampli
tude behaves like slct). In the case of elastic 
processes for small t such a pole is the vacuum 
pole, which for t = 0 has l ( 0) = 1. As the momen
tum transfer ~ increases l(t) can become 
negative. And so the impression is created that 
for sufficiently large negative t the amplitude 
may decrease arbitrarily fast with increasing s. 

We now show that in the relativistic theory the 
partial wave amplitudes fz(t) for any t have sin
gularities when Re l ~ -1, consequently, that the 
amplitude A(s, t) cannot decrease faster than 1/s 
for any value of t. This conclusion is valid for 
the amplitudes of any two-particle processes. The 
reason for the existence of these singularities is 
due to the fact that the relativistic amplitude has 
three Mandelstam spectral functions, which give 
rise to the appearance of singularities near nega
tive integer l. These singularities are, appar
ently, poles that accumulate at these points, i.e., 
the points themselves become essential singular 
points. 

To prove these assertions we consider the ex
pression for the partial wave amplitude: [2] 

00 

ft (t) = ~ ~ Qt (z) A1 (s, t) dz, 
Zo 

z0 = 1 + 8112/(t- 4!!2), z = 1 + 2sj(t- 4!!2); (1) 

for simplicity we consider the case of identical 
particles of mass p,. If Re l > l 0, where l 0 is 
determined by the maximum number of subtrac
tions, then, as was shown in [s J , the quantity 
<I>z(t) = fz(t)(t -4p,2 )-l satisfied as a function of 
t a dispersion relation of the form 

_ .!_ f lm CD1 (t') dt' + 4- f !!CD 1 (t') dt', 
<Dt(t) - n .l t'- t .. .l t'- t 

4i!-1 -oo 

where 

(2) 
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The first integral in Eq. (3) is taken along lines of 
the type AC, A'C' (see figure); the second integral, 
which exists only in the relativistic theory, is taken 
along lines of the type abed, a'd' in the region 
where the Mandelstam spectral function p ( s, u) is 
different from zero. The dispersion relation (2) is 
to be understood in the sense that the necessary 
number of subtractions has been carried out. All 
of the remaining argument is based on the fact that 
the Legendre functions Qz( s) have poles at all 
negative integer values of Z. 

In spite of the presence of these poles in Qz ( z) 
it does not follow from Eq. (1) that the partial wave 
amplitudes fz(t) have poles at these points. This 
is because the representation of fz ( t) in the form 
(1) is valid only for Re l > m, where m is the ex
ponent of the power that determines the behavior 
of A( s, t) at large s. If m > - 1 then the integral 
is meaningless for negative integer l and the prob
lem does notarise. If m < - 1 then the residue ofthe 
pole at l = - n - 1 is equal to· (4/ rr)j Pn ( z ) A1 ( s, t )dz. 
If n = 2k + 1 ( k integer) then this residue vanishes 
as a consequence of Cauchy's theorem for the func
tion Pn(z)A for n >- (m+1). If n = 2k then, 
generally speaking, the residue does not vanish, 
but for such l the pole in the partial wave ampli
tude is exactly compensated by the factor Q_z_1 (- z) 
+ Q_z_1 ( z) that is present in the amplitude A( s, t) 
expressed in terms of partial waves. [7] If we were 
discussing the antisymmetric amplitude, then even 
and odd l would exchange places. 

In the relativistic theory the situation is differ
ent in that Qz(z) enters, according to Eq. (3), also 
in the expression for the jump in <I> z ( t) across the 

left cut. As was remarked previously, [6] the ex
pression (3) for i1<I>z(t) is meaningful for arbitrary 
complex l since it is determined by integrals over 
a finite region of analytic functions Pz and Qz. 
Therefore in the relativistic theory i1<I>z has, 
generally speaking, poles at negative integer Z. 

Let us analyze the possibility that the residues 
at these poles vanish. Since the residue of Qz ( z) 
at the pole l = - n- 1 is equal to rrPn ( z ), in order 
for the residues at all poles to vanish it is neces
sary that the integral 

z" 

~ Pn(z)p(s,u)dz 
-z, 

be equal to zero for all n. Since z0 < 1, this is 
possible only if p ( s, u) = 0. It is easy to see that 
the residue at the pole l = - 1 also cannot vanish, 
at least not in a certain region of t for which the 
line abed (see the figure) lies in a region where 
the Mandelstam spectral function is positive [such 
a region always exists near the border of exist
ence of p( s, u )]. We note that in the case of scat
tering of identical particles L1<I>z has no singulari
ties for even negative l since p( s, u) is a symmet
ric function of z. When the dispersion relation (2) 
and the unitarity condition are used as the equa
tions determining <I> z ( t), the jump across the left 
cut i1<I>z plays the role of the inhomogeneity in the 
problem (equivalent to a potential). It therefore 
follows from the above considerations that the am
plitude <I>z(t) will have singularities at negative in
teger Z, at the very least in some interval of values 
of t. 

In order to make clear precisely what happens 
with <I> z ( t) at these l we turn to the dispersion 
relation, Eq. (2). If we continue this equation into 
the region Re l < Z0 along the real axis, then it 
will change if singularities for some values of t 
are encountered while moving in the l plane. Let 
us suppose first that these singularities are mov
ing Regge poles. Then, if for some t = t' we first 
!encounter a pole of <I>z(t) on the real axis at l = l', 
Re l < l 0, a pole will appear in the t plane for l 
= l' on the physical sheet at t = t'. Then a term 
of the form r I ( t - t' ) is added to the dispersion 
relation, Eq. (2). If on further changing l we meet 
with several poles for various t, then a number of 
terms are added to the dispersion relation, Eq. (2), 
which takes the form 

oo lm<D /I') o 1'\<D (t) N (I) 
ID (t) = _!_ ( ~ dt' + __1_ I - 1 - dt' + "" !...r!__ 1 n l t t n J t'-t ~ t -t • 

4tJ. 2 -oo n=i n 
(4) 

As was remarked previously, [6] the poles can ap-
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pear only on the right cut since .6.ci>z(t) is an ana
lytic function of l. In fact, because of the unitarity 
condition they can appear for t > 4J1.2 only if their 
residues vanish at the same time. 

Let now l -- -1. Then .6.ci>z -- oo and if the 
sum over the poles contains a finite number of 
terms then ci> z ( t) -- oo for any t. However, as a 
consequence of the unitarity condition ci> z ( t) has 
its modulus bounded for t > 4M2• Therefore the 
number of poles must be infinite in order for them 
to compensate the contribution from the left cut. 
Moreover, the poles must fill the whole of the real 
axis for t < t' (see the figure), so that the dis
tance between the poles must tend to zero. Other
wise the contributions from the poles and from 
the left cut would have different analytic proper
ties and would not be able to compensate each 
other. This means that for given t < t' as l -- - 1 
we should encounter in the l plane arbitrarily 
many poles in a small neighborhood of l = - 1. It 
therefore follows that l = -1 is an essential sin
gular point of ci>z(t) for t < t'. It is obvious that 
this essential singularity exists for any t since 
its position is independent of t for t < t'. 

Let us see now whether the situation is changed 
if there exist in the l plane in the interval - 1 < l 
< Z0 of the real axis singularities other than Regge 
poles. If such a singularity is a branch point, whose 
position is independent of the energy t, then the re
strictions on the asymptotic behavior of A( s, t) be
come even stronger. The analytic properties of 
ci> z ( t) as a function of t are in that case unchanged. 
Only the unitarity condition for l to the left of the 
branch point is changed. The unitarity condition 
written in the form [2] 

~ [ <Dt- <D;.J = ~ <Dt (t)<D;. (t- 4~t2) 1 , (5) 

is valid for any Z, but to the left of the branch point 
it does not mean that ci>z has a restricted modulus, 
because ci>z* is not equal to ci>z in view of the pres
ence of a cut in the l plane. From the unitarity 
condition, Eq. (5), it follows, however, that ci>z can
not be unbounded on both sides of the cut. If ci> z 
-- oo on one side of the cut then it must equal 
± ( w/2ik )( t- 4M2 ) -Z on the other side. If we con
sider l on that side of the cut where ci>z is finite 
then all of the above considerations remain un
changed including the conclusion about the exist
ence of an essential singularity near l = - 1. If 
in the indicated interval we meet a branch point 
whose position depends on t then, at least for 
t < t', the restriction on the asymptotic behavior 
of A( s, t) becomes even stronger. This problem 
will not be discussed here in detail because we do 

not understand how there can appear in the l plane 
moving cuts. [6] 

In conclusion we wish to thank V. B. Berestet
skil, M. Gell-Mann, S. Mandelstam, L. B. Okun', 
M. Froissart, and K. A. Ter-Martirosyan for use
ful discussions. 
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l. In the case when the velocity v of a uniformly 
moving charge and the dielectric constant E( w) 

of a homogeneous medium satisfy the inequality 
v2E( w) < 1 (n = c = 1 ), no Cerenkov radiation is 
possible. It is shown below that under such condi
tions, in real media, a different type of radiation 
of a uniformly moving charge is possible, one which 
can naturally be called combination radiation. As 
is well known, the possibility of Cerenkov radiation 
in a medium is connected with the coherent scat
tering of a photon by atomic electrons, something 
accounted for by introducing the dielectric con
stant E( w ). Yet in addition to coherent photon 
scattering there exists also Raman scattering, 
wherein the quantum frequency changes upon 
scattering as a result of the transition of the atom 


