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It is shown that the Regge pole trajectories, describing a family of fermions (which have 
direct physical meaning for half-integral values of the angular momentum), possess a 
number of properties that are substantially different from those discussed previously and 
from those present in nonrelativistic quantum mechanics. Namely, it is shown that the 
poles of the scattering amplitudes ft ( u) and f~ ( u) in states with angular momentum j 
and parity (- 1 )j±1/ 2 must coincide when the square of the energy in the barycentric 
frame u tends to zero, and must become complex conjugate when u < 0. This leads to 
a quite specific character of the amplitudes for elastic scattering of mesons on nucleons 
in the angular region near 180°. 

1. INTRODUCTION 

IN recent months a most interesting and promis
ing development has come about in the theory of 
strong interactions based on the concept of moving 
poles of scattering amplitudes as functions of the 
angular momentum -the so called Regge poles. [1] 

The main attraction of this concept lies in the way 
Regge poles unify the spectrum of particles and 
resonances with the asymptotic behavior of high 
energy scattering. At that the asymptotic scatter
ing behavior, particularly in the region of small 
angles, turns out to be comparatively simple and 
universal, although not subject to a simple classi
cal description. 

From the point of view of the Regge-pole hy
pothesis the fundamental objects to be studied in 
the theory of strong interactions are the trajec
tories of these poles, and not elementary particles. 
The trajectories of boson Regge poles, and in par
ticular the trajectory of the pole having the vacuum 
quantum numbers (the Pomeranchuk trajectory), 
have been discussed in some detail. [2- 5] 

In this note we shall show that the Regge-pole 
trajectories describing a family of fermions (hav
ing direct physical meaning for half-integral val
ues of the angular momentum), have a number of 
properties substantially different from those dis
cussed previously and from those present in non
relativistic quantum mechanics. Namely, we shall 
show that the poles of the scattering amplitudes 
fl ( u) and f! ( u) in states with angular momentum 
j and parity (- 1 )j± 1/2 should coincide when the 
square of the energy in the barycentric frame u 

tends to zero, and should become the complex con
jugates of each other for u < 0. This leads to a 
quite specific character of the amplitudes for elas
tic scattering of mesons on nucleons in the angular 
region near 180°. 

The fact that the poles of ft ( u) and f~ ( u) 
should coincide at u = 0 can be understood almost 
without any calculations. Let us suppose that the 
pole of some one amplitude at u = 0 has j = t;2 ; 

then corresponding to it we have a particle with 
zero mass and spin t;2 -a "neutrino." The con
tribution to the amplitude for the scattering of a 
meson on a nucleon due to such a particle is de
scribed by the Feynman diagram shown in the fig
ure, and is equal for nonderivative coupling to 
(p + k)-1 or iy5(p + k)-1 iy5, depending on the 
parity of the neutrino relative to the nucleon
meson system. In the first case the pole should 
be present in the amplitude f~ ( u) ( s 112 state), 

}---{ 
in the second case in the amplitude f! ( u) ( p1/2 
state). 

However, since 

irs (p + kt1 irs = (p + ktl, la 

the interaction is in both cases the same and, con
sequentl~r, the pole should be present in both am
plitudes ft ( u) and fl ( u). This is a manifestation 
of the we 1-known fact that as a consequence of the 
y5 invariance of the Dirac equation for a massless 
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particle the concept of a neutrino parity makes no 
sense, even in a theory with parity conservation. 
The fact that the poles of ft ( u ) and f! ( u ) become 
each other's complex conjugates for negative u 
testifies to a close connection between these am
plitudes. This connection is due to the kinematic 
singularity fU present in spinor amplitudes. 
fU enters into the expressions for fj ( u) in such . ± 
a way that a function fJ ( fU ) can be introduced for 
which1> 

t~ (u) = t1 (-Vu). (I) 

At that each pole j = j ( fU ) of the function fj ( -/U ) 
appears in both amplitudes and has as a function of 
fU rather simple properties. The explicit depend
ence on .fU · of the equation determining the pole 
trajectory gives rise to the result that for negative 
u the angular momentum becomes necessarily 
complex. 

Thus, on the basis of purely kinematic consid
erations we arrive at the conclusion that there are 
no fermion Regge poles corresponding to states 
with real angular momentum and imaginary mass. 

The question arises whether states with imagi
nary mass should not have complex angular mo
mentum also in the case of bosons, in spite of the 
absence of the corresponding kinematic reason. 
At this time we do not know the answer to this 
question. We shall only remark that if such a be
havior is assumed for the Pomeranchuk trajectory 
then the partial wave with l = 0 will, generally 
speaking, have complex unphysical poles as a 
function of energy. 

2. FERMION REGGE POLES NEAR u = 0 

To prove the above assertions we consider 
scattering of mesons on nucleons. The Regge 
poles in the amplitudes for this process have been 
considered in a number of papers, [3- 5] however 
the above-mentioned situation was not noticed. 
The scattering amplitude in states of definite iso
topic spin has the form 

F =a (u, t) + ~ b (u, t) (k + k'), (2) 

where u = (p + k) 2 is the square of the energy in 
the barycentric frame, and - t = - ( p' - p )2 is the 
square of the momentum transfer. 

By considering matrix elements (A.' I F I A.) be
tween states of nucleons with definite helicity A. 
and A.' it is easy to obtain relations between a(u, t), 
b(u, t) and the partial amplitudes cpli.'A.(u): [6] 

l)The author is grateful to V. I. Shekhter, who has called 
his attention to this circumstance. 

A (u, t) = 2ma (u, t) + (u - m2 - 112) b (u, t) 

= 2~!pL, (u) [P;+'/, (z) -P;_,1• (z)], 
j 

B (u, t) = (u + m2 - !12) a (u, t) + (u - m2 + 112) b (u, t) 

= 2 Yu ~ !p~:u (u) [P;+'/, (z) + P;_,1, (z) ], (3) 
I 

where z is the cosine of the scattering angle: 

z = I + 2ut [u2 - 2u (m2 + 112) + (m2 _ !12)2]-I. 

The helicity amplitudes cp t'A. ( u) are related to 
the above introduced amplitudes with definite an
gular momentum and parity fl ( u) by 

I 1 · · IP±n (u) = 2 [f~ (u) ± f~ (u)]. (4) 

If use is made of the dispersion relations for 
A(u, t) and B(u, t) in the momentum transfer t 
at fixed u, then, analogously to what was done 
in .[2, 7] , one can introduce analytic functions 
cpt~A. ( u) of j with decreasing asymptotic behavior 
as j - co satisfying the unitarity condition and 
coinciding with the physical partial amplitudes for 
even and odd values.of j +Y2 respectively. 

By expressing cp~'A.(u) with the help of Eq. (3) 
in terms of A( u, t) and B( u, t) and continuing the 
resultant expressions to the point u = 0, one con
cludes from the fact that A( u, t) and B( u, t) have 
no singularities at u = 0 that, as is obvious from 
th_e point of view of (3), for any j the function 
cp~u(u) tends to inf~nity or to zero as u- 0, 
~hile t~e function cph ( u) remains finit~. This 
1s poss1ble only if the singularities of fJ ( u) as 
a function of j coincide at u = 0. This ~onclusion 
is valid n.o matter what the nature of the singulari
ties of cp~,A.. 

If the conjecture is made that in any event the 
nearest singularities from the side of large j are 
poles, then their trajectories may be studied in 
more detail. In order to do so we consider the 
asymptotic behavior of A(u, t) and B(u, t) for 
u > 0 and t- -co, i.e., s---.. co [s = (p-k')2, 
s + t + u =2m2 + 2J..!2 ). Passing in the usual way 
from summation to integration, and taking into 
account that for u > 0 the poles are on the real 
axis and conslqering only the nearest pole in the 
amplitudes cpl\.~71.' we obtain 

A (u, s) = i~5, [si-'/, =F (- s}i-'/,1 _1_. 
COSJIJ ' 

B (u, s) = Vu r:l:n rsi'-'/, =F (- s)i'-'/,1 - 1-. (5) 
cosn( · 

where j = Hu), j' = j'(u) are the positions of 
poles in cp IA.A. ( u); r~,A. are residues of the partial 
amplitudes multiplied by 
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2H1 V2n r U + 1) yi-'1, 
r u + 1/2) ' 

r=u [u2- 2u (m2 + !l2) + (m2 _!l2)2J-1. 

It is easy to verify [2] that the absorptive parts 
A1(u,s) and B 1(u,s) are 

A 1 (u, s) = ± rt~.. (u) si-'1', 

B1 (u, s) = ±Vu r:'=n (u) si'-'1'. (6) 

If no parity degeneracy is assumed then the 
poles of f! ( u) and f! ( u) do not coincide for u > 0. 
Therefore only the pole of one of the amplitudes, 
the one which for the given u has the larger j, 
contributes to the asymptotic behavior of A and 
B. In that case, according to Eq. (4), j = j', 

rn = ± r_n (7) 

and consequently 

(8) 

At u = 0 t~e equality .of (8) loses meaning since 
the poles of fJ+ ( u) and f~ ( u) coincide. If we sup
pose that for u < 0 the poles of f! ( u) and f! ( u) 
remain, as before, on the real axis then again one 
of the poles will dominate and Eq. (8) is reestab
lished. However in that case, since fU is pure 
imaginary, Eq. (8) is in contradiction with the real
ity of the functions A1 ( u, s ) and B1 ( u, s ) for u 
< (m + 1J.) 2• If the poles of ft(u) and f!(u) go off 
into the complex plane but are not each other's 
complex conjugates we again arrive at a contra
diction because of the reality of A1 and B1• 

We thus reach the conclusion that the poles of 
the amplitudes f! ( u) and f! ( u) must be each 
other's complex conjugates for u < 0. For the 
same reason the residues at these poles must be 
each other's complex conjugates. 

3. THE ASYMPTOTIC BEHAVIOR OF BACKWARD 
SCATTERING 

Denoting the residues of f~(u) and f!(u), mul
tiplied by 

21+1 V2n r (i + lf2) yi-'1, 
r (i + 1) • 

by pe±icp we obtain 

A 1 (u, s) = ± p± (u) si'-'1• cos (j"£ + <p), 

B1 (u, s) = ±¥=Up± (u) si'-'1• sin (j"£ + <p), (9) 

where ~ = ln s, j' = j' ( u ) , j 11 = j 11 ( u ) are the real 
and imaginary parts of the function j = j ( u) which 
determines the location of the pole. 

Equation (9) goes over into Eq. (6) for positive 
u in such a way that A1 and B1 have no singulari-

ties at u = 0, provided that j 11 ( u) = a..r::u. and 
cp ( u) = f3V-li for small u, where a and {3 have 
no singularities at u = 0. 

The real parts of the amplitudes A and B have 
the form 

R.e A = a±p± (u) cos (j"£ + <p=t=~) si'-'1•, 

R.e B = a±p± (u) V- u sin (j"£ + <p=t=~) si'-'1•; 

a~= (ch nj" =F sin nj')/(ch nj" ±sin nj'), 

tg ~ = sh nj"/ cos nj'. (10)* 

Equations (9) and (10) determine the asymptotic 
behavior of meson-nucleon scattering in the region 
of angles close to 180°, in the channel where s is 
the energy. Analogous formulas are valid for the 
asymptotic behavior of two-meson annihilation 
(where t is the energy ) . 

The differential cross section for elastic scat
tering in the region of angles close to 180° is of the 
form 

dcrjdQ = - y[ I A 12 -I B 12/ u] = c(u)s2i'-I, 

c(u) = -yp2(l+a2). (11) 

It does not oscillate as a function of energy in 
spite of the oscillatory character of the ampli
tudes A and B. All other characteristics of the 
scattering are oscillatory. Thus, for example, 
the nucleon polarization !;;, arising from scatter
ing off an unpolarized target, does not fall off but 
oscillates with increasing energy: 

s = (1 - sin2 nj'jch2nj")'f, sin(2j"£ + 2<p =t= ~). (12) 

As was pointed out to the author by I. Ya. Pomer
anchuk, the asymptotic behavior, Eqs. (9) and (10), 
corresponds to an effective radius proportional to 
ln s if j 11 ( u) "' -../- u , which according to Froissart 
[a] is the maximum possible growth of the effective 
radius. Let us recall that the effective radius of 
the interaction responsible for diffraction scatter
ing is proportional to ln1/2 s. [2] 

It is necessary to emphasize that since the am
plitude for backward scattering does not increase 
with increasing energy, as is the case for forward 
scattering, the poles that determine the asymptotic 
behavior can lie, for small u, in the region Re j 
< 0. When the poles do lie in the region Re j < 0 
they might not dominate the asymptotic behavior, 
both because of the presence of other types of 
singularities and because for Re j < 0 the Legendre 
functions again start to increase with increasing z 
and, generally speaking, Eqs. (9)-(12) no longer 
follow from Eq. (3). In order to obtain the appro
priate formulas in this case the procedure must 

*tg = tan, sh = sinh, ch = cosh. 
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be modified in the way described by Mandelstam 
for spinless particles. [9] 

The Mandelstam method consists of the follow
ing: when going over from the summation (3) to 
the integral and opening up the contour of integra
tion it is necessary to replace Pj± 1; 2(- z) accord
ing to the formula 

p;+'!,(-z) 1 ' ' 
- cos:rtj = :rtsin:rtj [Qi±';,(-z)-Q-U±'/,)-d-z)]. 

(13) 

The behavior of (/}~',\ ( u) at large j is such that 
when calculating the contribution from the first 
term the contour of integration may be closed in 
the right half-plane and reduced to the sum of 
residues at the poles 1/sin 1rj. The second term 
behaves for large z like zj±l/2 and therefore, 
when calculating the contributions due to it, it is 
appropriate to deform the contour of integration 
into the left half-plane. At that one encounters 
the poles 1/ sin 1rj. As a result, if the contour is 
deformed sufficiently far to the left, the ampli
tudes A and B will contain in addition to the usual 
contributions from the poles of (/}~',\ also terms 
of the form 

h [Cfl~'A (u) + cp;!~ (u)l Q~±'/, (z), 

which for large z behave like z- <3/ 2+nl .. 
It can be shown that the amplitudes (/}\',\ in the 

case of the scattering of spin Y2 particles by an ex
ternal field are such that the contributions from 
these terms are equal to zero. Whether this is 
also true in the real case we do not know. We 
can only assert that if the partial waves have no 
singularities other than poles then for u < 0 the 
cross section da/dQ has at high energies either 
the form, Eq. (11), or 

da/dQ = c (u) s-<n+a>, 

where n is an integer or zero. 
Let us remark that the Eqs. (5) and (9)-(11) 

might, generally speaking, also be inapplicable 
in the region of u so small that us/(m2 - 1})2 

~ 1, since in that region z ~ 1, and there is no 
justification for keeping one pole only. 

4. POLE TRAJECTORIES 

In conclusion let us discuss in some detail the 
trajectories of the poles of ft ( u) and fl ( u). 

As was already remarked at the beginning of 
this note, the close connection between states with 
the same total angular momentum and opposite 
parities manifests itself as follows: according to 
Eq. (3) and (4) the formal substitution of fU by 
-: fU is equivalent to the sub~?titution of ft ( u) by 
f! ( u). Should the functions f~( u) have no singu-

larities at u == 0, aside from those due to the pres
ence of fU in Eq. (3), then Eq. (1) would deter
mine an analytic function fj([U ), whose values 
in the right and left half-planes coincide with 
ft ( u) and f! ( u) respectively. 

Such singularities actually exist. They are due 
to the so called left cuts of fl ( u). As was shown 
in [7] , however, the discontinuities across the 
left. cuts have no singularities in j. Therefore 
the equations determining the locations of the 
singularities in the j plane are not related to 
these cuts and should be analytic functions which, 
for Re fU > 0 determine the singularities of fl(u ), 
and for Re fU < 0 the singularities of fl( u). 

The function j == j(Vu), determining the loca
tion of the pole of fj ( fU ) , should have the follow
ing character: j(Vu) is complex for fU > m + J.t 
and fU < - (m + J.t) in view of the unitarity con
dition for the ampFtudes fl < u). If we consider 
that the poles of fi lie on the real axis when 
0 < u < (m + J.t) 2, then j(Vu) is real in the inter
val - (m + J.t) < {U < m + J.t. Thus j(Vu) should 
be a function with two cuts and, provided that the 
poles of f ( ..fU ) do not intersect, it should satisfy 
a dispersion relation of the type 

00 

. CVu) = ...!_ I Im j+ (u') d Jfl? 
1 n .l v u'- v u 

m+p. 

where 1m l ( u) are the imaginary parts of the 
positions of the poles of fl ( u). 

(14) 

In conclusion I wish to express my deep grati
tude to I. Ya. Pomeranchuk and V. M. Shekhter for 
numerous and exceptionally useful discussions. 
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