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By means of the two-particle Green's function, a study is made of the level shifts of one­
electron atoms in a plasma and of the equation of state of a Debye plasma. It is shown that 
low energy states experience a shift proportional to the root of the density and to the ratio 
kT/En for the case when this ratio is small. The shift of the ground state of particles of 
charge z - 1 leads (in thermodynamic functions) to a correction that exceeds earlier ob­
tained corrections to the Debye term if the densities of such particles are comparable with 
the electron density in the plasma. 

THE level shift of single-electron atoms and ions 
in a plasma was investigated by Pargamanik [l] 

with the aid of a one-particle Green's function, with 
one ion separated and the plasma considered in the 
Coulomb field of this ion. The change in the energy 
of the one-electron excitations represented a shift 
in the energy levels of the atoms in the plasma. 
However, the value of the shift obtained thereby is 
incorrect. In the present paper the level shift of 
the bound states is determined with the aid of four­
dimensional perturbation theory on the basis of the 
Bethe-Salpeter equation. 

The diagram technique was successfully em­
ployed recently for an investigation of the equation 
of state of both classical [2•3] and quantum systems 
C4- 6J. However, for a more correct investigation 
of the contribution of the bound states to the ther­
modynamic functions of the plasma, the latter are 
best calculated with the aid of the two-particle 
Green's function. We consider in this paper first 
a particle system with short-range forces, and 
then a particle system with Coulomb interaction. 

1. LEVEL SHIFT 

A. Perturbation theory. Let us consider a sys­
tern of Coulomb particles in a volume V in the 
state of thermodynamic equilibrium at a tempera­
ture T = 1/{3. The bound states of the particles 
are described by a two-particle Green's function 
whose poles determine the levels of the discrete 
spectrum. Let us consider also thermodynamic 
conditions by which the bound systems made up 
of an ion with charge z and an electron predomi­
nate in the plasma. If the energy of interaction of 
such a system with the plasma is sufficiently small, 
then the indicated poles can be determined by per­
turbation theory. In the zeroth approximation the 

potential is of the Coulomb type, and the equation 
for the Green's function has in momentum space 
the form 

Go (p1) Go (P•) ~ \ d V ( ) G ( . ) 
- (2n)"f3 .L.Jj q q 2 P1+q,p2-q,pa,P4· 

q, 

Changing over to the relative variables 

P = i (pl - P2), 

g = P1 + P2 = Pa + P4 

(1) 

(1') 

and defining the function 

\jJ (p + g/2, g/2 - p, g/2 + p', g/2 - p') = \jJ (p, p', g 

as 
'IJ (p, p', g)= 02 (p, p', g) a-~(g/2 + p') o-~(g/2- p'), 

we obtain an equation for ¢( p, p', g): 

\jJ (p, p', g) 

=Go (g/2 + rdn~~ ~g/2- p) 2J ~ dq U (q) \jJ (p- q, p', g) 
q, 

+(2n)3 f36(p-p'). (2) 

Let us introduce the three-dimensional function 

\jJ (p, p', g) = 2J'IJ(p, p', g). 
p, 

Summing both halves of (2) over p 4 (p4 = ( 2n + 1 )7r/{3 ), 
we obtain an equation for ¢( p, p', g): 

\jJ (p, p', g) 

- - 1- 1 \ d u ( ) •h ( - ' ) - (2lt)3 ig4 - g2/4m- p2/m +2!! 'j q q 'I' P q, P ' q 

+ (2n)3 b (p- p'). (3) 
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Summation over p4 is carried out here and through­
out by a procedure described in Fradkin's paperC4J. 
The function G0( p) has the form 

Go (p) = 0 r P4-.- (2n -H) Jt/~] 
-1p4- fL+ Sp 

Putting ig4 -g2/4m + 211- = E', we can see that Eq. 
(3) coincides with the Schrodinger inhomogeneous 
equation for the relative motion of two particles; 
the eigenvalues of this equation determine the un­
perturbed energy levels. 

To analyze the interaction between an atom or 
an ion with a plasma, we add to the kernel of the 
integral equation (2) ( U) a supplementary inter­
action ~U, which depends generally speaking on 
q4• To find the energy shift due to ~U ( q, q4 ) we 
can construct a perturbation theory analogous to 
the four-dimensional perturbation theory in quan­
tum electrodynamics [7]. 

Let 1/Jn ( p) be the wave function and En the 
eigenvalue of some stationary state, described 
by the Schrodinger equation 

[Fn (p) -Lol 'IJln (p) = 0, 

Lo'IJln = (2!)3 ~ dq U (q) 'IJln (p - q, p', g), 

(4) 

(5) 

Analogously, Eq. (2), for this state has the form 

!Fn (p) -LJ 'IJln (p) = 0, (6) 

L'IJln (p) = (21t~3 ~ 2} ~ dq U (q) 'IJln (p - q, p', g). (7) 
q, 

Then the eigenfunction 1/Jn ( p) corresponding to the 
state n can be written in the form 

En- sp 
'IJln (p) = n (p) ~ 'IJln (p). 

For a certain constant value E.6,., not coinciding 
with En we introduce two new functions 

(8) 

~a E~- sp • 
\);n (p) = Fa (p) ~ 'IJln (p), (9) 

where F ~ corresponds to the value of E~. 
Let 

U (q) = U (q) "+ D.U (q, q4). (10) 

and let the solution of the corresponding perturbed 
equation be the function 1/Jn ( p) [which coincides 
with the function 1/Jn ( p) when ~U ...... 0 ]. Let fur­
ther the eigenvalue of the energy corresponding 
to this solution be 

Ea =En + D.En. (11) 

Writing down the perturbed state in operator form, 
we have 

(Fa -L 0 - D.L] '¥ n (p) = 0. (12) 

Acting on ¢fr by the operator F ~ - L0 we obtain 

(Fa -L0)'\jl~ = (Ea -En)'IJlnl~, 

'IJ~ (Fa - L 0) = (Ea -En) 'ljl~/~. 

We introduce a new function 

'IJla = 'Yn -'ljl~. 

Then (12) assumes the form 

(13) 

(14) 

(15) 

(Fa- L 0) 'ljl~ + (Fa - L 0) 'IJla = l~L'Ijl~ + M'f1a. (16) 

Inasmuch as ~LijJ « L01jJ and ~En« En, we get 
ljJ ~ « 1/Jfr and 1/Jfr :::o 1/Jn. Multiplying (16) from the 
left by ¢fr we obtain with account of (11), (12), and 
(14), 

6.£11~-1\[1~ (')1~ -+- 'IJla) = \i)~ D.L (\1:~ + 'IJla). (17) 

Neglecting in (17) terms of second order of 
smallness, we obtain after summation over p4 

(18) 

Integration of (18) with respect to p leads to the 
following expression for the shift: 

(19) 

It is easy to see that in the case when ~U is inde­
pendent of q4, formula (19) gives the usual correc­
tion to the energy in first order of perturbation 
theory for the Schrodinger equation. 

We can show analogously that in the presence 
of degenerate unperturbed states the shift ~E must 
be found from the secular equation 

2} (Vnn' - D.Eonn•) Cn• = 0, (20) 
n' 

where n and n' run through all the values pertain­
ing to the unperturbed level En, and 

V ' -- 1 "'V \ d d '(En- sp)(En- sp,) 
nn - (2Jt)3 [32 Li, .l P P p ( ) p ( ') 

p,,p, n P n P 

X '\J~ (p) D.U (p, p') 'IJln• (p'). (21) 

Subsequently, the nondiagonal matrix elements drop 
out, since ~U is independent of the angles for small 
values of q. 

B. Calculation of the level shift. In the case of 
two different bound particles (ion with charge z 
and electron) we must write 

~F:p) = l}oq~ g+ P) G~ (:o g- P) 
p, p, 

~ (· p2 p2 g2mo )-1, 
~ ~ tg•- 2M -2m - 2mM + fte + fti ' 
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r-Q_~ n:o ~~~ r--1~ 4--~ 
2 J ~ 5 6 

where m 0 = mM/ ( m + M), and JJ.e and JJ.i are the 
chemical potentials of the electrons and ions. 

The largest terms which contribute to ~U, i.e., 
the terms proportional to the first power in the 
density, are represented by the diagrams shown in 
Fig. 1. The loops in these diagrams can be elec­
tronic ( e ) , ionic ( i ) , or "atomic" ( a ) and can 
be inserted in both lines. For example, for a dia­
gram of type 1 with ionic loop, ~U has the form 

f':..U (q, q4) = (2n\• ~ ~ ~ G~ (p) G~ (p + q) Vu (q) V1, (q) dp. 
p, 

The expression for 2: ( g/2 + p ), corresponding 
to diagram 2, is written as 

I . ( g) x G~ p- q + 2 Vu (q) dp1dq. 

It is easy to see that diagrams of type 1-3, 5, 
and 6 give expressions that diverge at small mo­
menta q, and to eliminate this divergence it is 
necessary to sum chains of loops of type e, i, and 
a. As a result we obtain effective interaction 
"potentials" V*( q, q4 ). For example, the poten­
tial for the ee interaction has the form 

. v,, (q) 

Vee (q, q4) = 1- V,, [II,+ z2IIi + (z -1)2 Ilal' (22) 

where the electronic loop is 

(23) 

and np = exp [- {3Ep] for Boltzmann statistics. 
It is essential that when q - 0 the quantity 

II ( q, q4 ) differs from zero for q4 = 0. Therefore 
in summing over q 4 the terms with q4 = 0 make 
the largest contribution. Terms of this type give 
a contribution proportional to the lowest power of 
the density. 

The calculation of the shift using diagrams 1 
with a chain instead of a loop, i.e., when ~U has 
the form ~U(q, q4 ) = V*(q, q4 ) - V(q), where 
V(q) = 47Te 2/q2 is the Coulomb potential, leads to 
the result (in the c.m.s.) 

f':..E - - _3__ 2 (' dp\jln (p) \jJ~ (p) 
n- (2Jt)"~ze X J En-sp , 

(24) 

FIG. 1 

Diagrams of type 2 yield the same expression with 
z replaced by z2 + 1. 

Substituting the wave functions in the form 

'i'n,t.m (p) = Fnz (p) Vt. m (e, <p), 

F ( ) = [~ (n -l-1)!]'/, 
nl p n (n+l)! 

x n222(t+1) [I n1p1 cz+l (n'p2 - 1) 
. (n•p• + 1/+2 n-l-l n•p• + 1 ' 

where CN( x) is the Gegenbauer function [SJ, we 
obtain the expressions for the level shift. 

For the S-states we have 

(- ~(z - 1 )2 aox for n = 1 
. 4 z ~ 

f':..Eno = ~ 2 

i- 23 (z-
2 

1) a~xn2 ., 
\ 1-' 1.0r n = 2, 3, 4 ... 

(25) 

where a0 is the Bohr radius of the hydrogen atom. 
For n = 2 and l ;r 0 we get 

1 2 2 
f':..E = _ 6 (z- ) aox f':..E = _ _!_.±_(z-1) a0x (25,) 

20 z ~ ' 21 . 3 z ~ • 

Diagrams of type 3 give the following shift for 
the S-states 

( 7n 2 2 (z-1)3 1 
- 2 e a0 --4 - [z3n1 + (z - 1)3 na- n1 ]1n -.----r.l 

f':..Eno = { z ex" 

t s; e•ag (z- 1)3 [lni + (z - 1)3 na- n,]ln e•~~ 

for n = 1 

for n = 2, 3 ... (26) 

Likewise diverging at small q are diagrams of 
the type 5 and 6, where the shaded square denotes 
the effective potential [9]: 

r ( , ) = 2 (2 )3 r:l (£'- ·) ""<Ek- spJ \jlk <Pl \jJ~ <P'l 
p, p , g l1 1-' Bp Li E'- Ek (27) 

k 

The calculation of the contribution of these dia­
grams leads to the result 

4Jte2 (z- 1)2 x2 \ dq 
f':..En = (2Jt)3 ~ . .l q2 (q2 +x2 ) 

When n ;r k we get ~En= 0, and when n = k we 
get 

(29) 
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To explain the meaning of expression (29), let 
us calculate the proper energy of the free electron 

"2,e(p) = ("2Jt~" l3 ~ ~ dqGg (p- q) [V*(q, q4)- V (q)] · 
q, 

Calculation at small values of q yields 

Le (p) == - e2x/ 4ep~. 

Consequently, 6En in (29) is a correction to the 
proper energy of the "atom," i.e., an ion with 
charge z - 1 moving freely. Indeed, averaging 
(29) over the Maxwellian distribution yields the 
De bye energy of an ion with charge z - 1: 

(30) 

This shift is independent of the state of the ''atom.'' 
The exchange diagrams, for example of type 4, 
give expressions that converge for all values of 
q, and the shift is of order ( a0K ) 2 I {3, which agrees 
with the usual calculation of the exchange integral 
for helium, as carried out by the authors. 

It follows from (25) and (25') that the level shift 
is proportional to the square root of the density 
and increases with temperature like .fT. The 
shift also increases with increasing principal 
quantum number. There is no such effect for 
hydrogen ( z = 1 ), something physically obvious 
in view of the short-range interaction of the neu­
tral hydrogen atom with the plasma. 

The magnitude of the effect can be judged from 
a comparison of the shift with the linear Stark 
splitting 

(31) 

where k is the principal quantum number and r 0 

the mean distance between particles. It is easy to 
see that 

/J.s/ !J.En ~xr0 ~ 1. 

The condition for the applicability of perturbation 
theory has the form 

!J.En!En ~ 1. 

It must be noted that in the derivation of the ex­
pression for the shift we have neglected Eg ..... kT 
compared with En. The formulas obtained are 
therefore valid at sufficiently low temperatures, 
kT/En « 1. 

2. EQUATION OF STATE 

A. System of particles with short-range forces. 
Let us consider a system of interacting particles 
in a volume V in a state of thermodynamic equi­
librium at a temperature T. The Hamiltonian of 

the system is H = H0 +Hi, where H0 is the Hamil­
tonian of the noninteracting particles and Hi is the 
interaction Hamiltonian: 

H 1 = ~ ~ ijJ (x1) 1j) (x2) U jx1 - X2) 'ljJ (x1) 1jJ (x2) . (32) 

Here U (xi - x2 ) = U (xi - x2 ) o ( ti - t 2 ) is the pair 
interaction potential and g' is the interaction con­
stant. 

The partition function of the system has the 
form 

(33) 

where J.l. is the chemical potential, n is the ther­
modynamic potential, and N is the total number of 
particles in the system. 

It is easy to see that U can be expressed in 
terms of the two-particle Green's function in the 
form 

(34) 

where p4 = Pi + p2 - p3 and n0 is the thermodynamic 
potential of the ideal system. 

The equation for G2 is given in the "ladder" 
approximation by formula (1). Introducing the 
function 

Q (p1P2; PaP4) = 02 (p1P2; PaP4) G~1 (Pa) G~1 (p4) 

and going over to the "center of mass" system (1'), 
we obtain 

g' 

!J.Q=2(2~)"l33 ~ ~,~<p(p',g) U(p' -p) 
0 

xjQ (p, p', g) dpdp' dg, 

P (p, g) = Gu (g/2 + p) 0 0 (g/2 - p) . (35) 

The equation for 

Q (g/2 + p, g/2- p, g/2 + p', g/2- p') = Q (p, p', g)i• 

has the form 

Q (p, p', g) = (2rc) 3 [6 (p - p') + 6 (p + p') l 

+ ~"2~)3~ ~ ~ dqU (q) Q(p- q, p', g). (36) 

Let us sum over p4 in (36), recognizing that 
U ( p) is independent of the fourth momentum com­
ponent. Putting 

Q (p, p', g)= 2:p, Q (p, p', g), 

we obtain 
g' 

_ 1 · dg' 1 , 
!J. Q - 2 ("2Jt)'f32 ~ 7 j <p (p ' g) 

0 

XU (p'- p) Q (p, p', g) dpdp'dg. (37) 
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We introduce the function 

where 

X (p) = f (p) I (E' - p2/m), 

r (p) = ~ u (p' - p) Q (p') dp' , 

' . g• E = tg4 --- + 211. 
4m (38) 

The equation for x has the form of an inhomoge­
neous Schrodinger equation 

( £' - ~~) X (p2) - (2~)" ~ U (p1 - P2) X (p1) dp1 

= (2n)3 ~ [U (p' - P2) 1 + U (p' + P2)l. (39) 

Expressing the solution of (39) in terms of the 
wave functions of the relative motions of the par­
ticles, substituting it in (35), summing over p4 

and g4, and integrating with respect to g, we ob­
tain in the case of Boltzmann's statistics 

(40) 

This is an analogue of the well known formula of 
Bethe and Uhlenbeck for the second virial coeffi­
cient in the quantum case. 

In the quasi-classical limit we obtain as are­
sult of simple calculation 

co 

= - ~; ~ (e-BU- I) 4nr2dr, n = eB11- (m j 2n[3)'1•. (41) 

Formula (41) coincides with the expression for ~n. 
due to the second virial coefficient, in the classi­
cal case. 

B. System of particles with Coulomb interaction. 
Inasmuch as the Coulomb forces are long-range, 
we cannot confine ourselves to pair interactions 
even in the first term of the expansion of the ther­
modynamic quantities in powers of the gas density. 
It is necessary to take into account the influence 
of many Coulomb particles. 

Let us consider a system of electrons against 
the background of a uniformly distributed positive 
charge. For correct account of the interaction it 
is necessary to introduce an effective potential of 
the form (22), which represents a "chain" of elec­
tronic loops (23). 

Inasmuch as in the present problem the signifi­
cant distances are e2{3 » a0 (where a0 is the Bohr 
radius), we can consider the adiabatic approxima­
tion. We assume that U*( q, q4 ) does not depend 
on q4• We then have in the Debye limit II ( q, q4 ) 

- - {3n, where n is the electron density. After 
calculations analogous to those made in Sec. 1, 
we obtain for ~Q 

e' 
e2~'-~ ( m )'/, \ de2 \' , , 

~Q = (2Jt)3 Jtp .) (;2 J dp dp u (p - p ) 
0 

X "2}e-~Ek 'ljJk(p') '\jJk (p), (42) 
k 

where ¢k( p) are the wave functions for a Debye 
potential with charge e 5, where 0 :::; A. :::; 1. 

Expression (42) converges if we subtract from 
it the first perturbation-theory term ~rlo 
= n2U( 0 )/2, which drops out in a real plasma be­
cause it is specified to be quasi-neutral. In the 
quasi-classical case e 2/nv » 1 we obtain in 
analogy with Section 1 the following expression 
for ~Q: 

1 co 

~~Q = 2nn2 (e2~) 3 ~ A-2 dA. ~ tdt {exp {t-1e-a.l) -1}, (43) 
0 0 

where a = {3e 2KA.312 « 1. 
In the expansion of (43) in a we retain the 

terms with negative powers of a and the terms 
proportional to ln a. As a result we obtain after 
integration with respect to A. 

- ~~Q = f ynj3iie3n'1, -+ Jt (e2~) 3 n2 In (~e2x), (44) 

which coincides with formula (12) of the paper by 
Vedenov and Larkin [s]. 

Let us consider a multi -component system 
made up of atoms, electrons, and ions. In this 
case we have for ~Q an expression of the form 

x "2}giiG~ (pl, pz; p3, P4), 
ij 

(45) 

where p4 = p1 + p2 - p3, gij is the constant of the 
interaction between the i-th and j-th components, 
while the functions G~j are determined from equa­
tions such as (1). Formula (45) is supplemented 
by the conditions of equilibrium and quasi-neutral­
ity of the plasma: 

f.Lz + f.Le = f.Lz-1 ' 

where qi is a charge of the particles of the i-th 
component. 

Let us consider a case when the plasma contains 
electrons ( e ) , ions with charge z ( i ) , and ( z - 1 ) -
fold ionized atoms. The latter constitute a one­
electron bound system and we shall henceforth 
merely call them "atoms" a. In this case the 



E N ERG Y- L E V E L S H IF T S A N D T H E E QUA T I 0 N 0 F STAT E 0 F A P LA SMA 106 7 

following interactions are present in the plasma: 
ee, ii, ie, aa, ea, and ia. The interaction with the 
repulsion potential is taken into account quasi­
classically, in exactly the same manner as in the 
derivation of (44). As a result we obtain, for ex­
ample for 6-Qii: 

:n: (R 2 2)3 I 1 + 3z2 "e 2 n pe2z'x ' 

theory. In this case the adiabatic approximation is 
no longer valid in view of the large velocity of or­
bital motion compared with thermal velocity. 

C. Construction of thermodynamic perturbation 
theory. The expression for 6-Q can be written in 
the form 

(50) 

where r is defined by (38) and satisfies the equa­
tion 

(46) f(p, p',g) = (2:n:) 3~U (p -p') 

In the case of an attractive potential it is nec­
essary to separate the contribution from the first 
discrete levels, and treat the remaining part quasi­
classically. Changing over in the formula 

1 

X ~ d{ ~ dp dp' U (p- p') ~ exp (- ~Et)'P~e (p') 1p~e (p) 
k (47) 

to the quasi-classical treatment, starting with the 
level En0 » 1, we readily obtain the converging 
expression 

l t n, t 

- ~ (D. Q;e) qu = 4:n:nen; (e2~Z)3 ~ ')..,2d'), { ~ [ exp ( e~a ) 
0 0 

( -, f e "-1 1 ) 
X 1 - erf v-t- - t;, 

2 t -ve "-1 1- ]} + ----=e-n, - --- 1. tdt V :n: t tn, 

a = ~e2 zx'A'1• ~1. 
(48) 

The expansion of (48) in Cl' leads with the accu­
racy indicated above to the following expression 
for 6-Qie. which does not depend on n0: 

4 n.n z2 

- ~ (~Q,.)qu = - 3 ~ e3 [ + 2 . ~; -1)2 ]'/z ne z n, z na 

2:rt(P2)3 j 1 (49) - 3Z "e z n;n. n [3e2zx . 

We calculate analogously the contribution from the 
quasi-classical part of the ea interaction. 

The contribution from the ground state of the 
atom E0, which in first approximation can be re­
garded as a Coulomb contribution, is already taken 
into account in Q0• The contribution to the equa­
tion of state from the shift of the ground level can 
be obtained by using four-dimensional perturbation 

Let 

f(p, p', g)= ro (p, p', g)+ rl (p, p', g), 

with r 0 represented by a ladder with Coulomb 
potential U. Let further V = U - 6. U, where 6. U 
is a small perturbation which depends generally 
speaking on the four momentum components. 

Neglecting in (51) terms of second order of 
smallness, we obtain an equation for r 1: 

(51) 

rl (p, p', g) = (z:n:\" 13 ~ u (p- P1) IJl (pl. g) rl (pl. p', g) dpl 

+ (Z:n:~"i3 ~ !':.U (p- Pt) <p (Pt• g) fo (Pt. p', g) dp 1 . (52) 

In first approximation we take into account the 
second term in the right half of (52), i.e., 

r~o> = (Z;)3 f3~ ~ dq !':.U (q, q4) <p (p- q, g) l'o (p- q, p', g)· 

q, (53) 

It is easy to see that r f0> does not depend on P4· 
Solving (52) by the iteration method, we verify that 
r 1 is likewise independent of P4· For 6-U in the 
form of a loop r fO> has the form represented in 
Fig. 2 by diagram 1, where the shaded square cor­
responds to ro. 

In the second approximation r 1 is represented 
by diagram 3, etc., so that diagram 5 of Fig. 2 
corresponds to a solution of Eq. (52) for r 1• Con­
sidering a solution of (52) for 6-U in the form 4, 
5, etc., we obtain for r 1 a diagram of the form 6. 

z J 4 

FIG. 2 

5 5 7 
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Let 

x (p, p'. g) = r 1 (p, p'. g) IP (p, g). (54) 

The equation for x has the form of a Schrodinger 
equation with right half 

E'-E 
8 (p, p'' g) = (2rt)3 ; h !p (p, g) 

q .. , P• 

X ~ dqf.U (q, q4) !p (p- q, g) ro (p-'- q, p', g), (55) 

so that the solution for x is expressed in terms 
of the ¢-functions of relative motion of the par­
ticles. 

Writing down for ~U a chain in place of a loop, 
summing over the fourth momentum component, 
we obtain for q- 0 from (50), (54), and (55): 

e' 
1 \' de2 r 

f.Q = (2rt)6 l3 .\ (!i J dp dp1 dg exp {~ (fle + fli- 8g)} 
0 

n,k 

Accurate to the higher powers of the ratio 
kT/En « 1, the greatest contribution to ~Q is 
made by the term with n = k. 

(56) 

Separating in (56) the contribution of the ground 
state, we have 

(57) 

Simple calculation yields 

~~{} ~ 5a0XIla/2zfl, (58) 

where na is the density of the "atoms." 
We calculate analogously the correction to ~Q 

due to the self-energy part inserted in G~ and Gi, 
where in place of a loop we write a chain as be­
fore. As a result of such a calculation we obtain 
an expression of the type (57), where the coeffi­
cient 5/2z is replaced by - 5( z2 + 1 )/4z2• Calcu­
lation of diagram of the type 6 and 7 (Fig. 2) leads 
to the De bye term, due to the change in the energy 
of the ion with charge z - 1 as it moves as a unit. 
This term has already been taken into account 
before. 

With account of (58), the expression for the 
thermodynamic potential of the system under con­
sideration has the form 

, " ""' xa + rt R3 .... -, ( )'l I 1 ii•• = -- L.J ni --- 12rt J"l-' 2.J n;ni q;qi n ~q.q.X. 
if l 1 

(59) 

Terms that are quadratic in the density L 
( e2{3 )3n2 have been omitted. The ratio of L to 

the term due to the shift is proportional to ay, 
where a = e2K{3 « 1 and y = f3Eo» 1. The first 
condition is the stronger one, so that conditions 
exist when this ratio is small. For example, for 
He II at T ~ 3 eV and P = 0.06 atm we have na 
- ne /2 ~ 9 x 1014 em - 3• In this case the ratio of 

L to the last term in (59) ( L1 ) is of order 10-2, 

and the ratio of the logarithmic term to L1 is 
about 10-1• Thus, in the case when the number 
of "atoms" is comparable with the number of 
electrons, the term in ~Q due to the level shift 
is more appreciable than the remaining correc­
tions to the Debye term. 

We consider the following qualitative explana­
tion of the studied effect to be possible. In the 
paper of Bohm and Pines [1o] it is shown that an 
electron gas can be described in terms of the 
Fourier components of the electron density at 
each point of space, Pk· with Pk proportional to 
the fluctuations of the electron gas density p. In 
the general case Pk = akqk + 1Jk• where the qk 
are the collective coordinates and the 1Jk are the 
density fluctuations connected with the motion of 
the individual particles: 

(60) 

If we consider the contribution made to the density 
distribution by the s-th particle, then taking ac­
count of the well known dispersion formula w2 

= wp2 + k2 (v2 ), where wp is the Langmuir fre­
quency and (v2) is the square of the velocity 
averaged after Maxwell, we have 

r k2 (v2) - (kv )2 1 . ( ) ~ h > 1k(r--r5 ) 11 r ) ·- . e 
s ~ k lw~+k2(v2)-(kvs)2 J . 

(61) 

The calculation of 1Js by means of formula (39) for 
the case of a slow particle leads, as is well known, 
to the ordinary Debye screening of its charge. 

Let us consider as the s-th particle an electron 
moving on a circle of radius a with constant ve­
locity Vo » ...; (v2 ) = VT· Then, separating the a­
function in (61), we obtain 
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Solving the Poisson equation with charge density 
(62), we obtain the potential at the point of the elec­
tron. It turns out that the main term in the expan­
sion of the resultant expression in powers of 
vT /v 0 has for any fixed t the form 

q> (a cos rot, a sin wt, 0, t) = -const.ex vrlv0 . 

This indicates a weaker screening of a rapidly 
moving electron compared with Debye screening. 
Indeed, the same value of the potential at small 
distances would be obtained by expanding a poten­
tial of the form const•exp[-K 1r]/r, where K1 

= KVT/v0• 

Bearing in mind that to calculate the correc­
tions to the energy it is necessary to know the 
potential at small distances, we write approxi­
mately 

(63) 

In our "atom" the electron revolves about a nu­
cleus with charge z. This charge also polarizes 
the plasma. To find this effect we have the follow­
ing equation [1! J 

(64) 

solution of which yields the screening of the charge. 
Both effects from the electron and from the nucleus 
must be regarded simultaneously. Adding to the 
right half of (64) the charge density due to the po­
larization of the plasma by the electron, and the 
density of the electron itself, we get 

.1-<p- x2<p = e (z- 1) (> (r) + exi e-~,r fr. (65) 

We do not know the exact boundary condition at 
zero but, neglecting the dimension of the "atom," 
we stipulate that at small distances, after subtract­
ing the self-energy of the particles, cp must be 
finite and proportional to z - 1. Then a particular 
solution of (65) with the second term in the right 
half yields 

Therefore the addition to the energy of the charge 
z - 1 has the form 

6£ = - const · (z -- 1 )2 e2x (vr jv0) 2 . (66) 

Multiplying (66) by the density of the "atoms," 
we obtain an expression of the same form as the 
last term in formula (59). This classical consid­
eration is undoubtedly crude in view of the diffi­
culty of formulating the problem in this form with 
any degree of accuracy. However, the presence of 
the effect of retardation of the interaction of the 
fast particle relative to the velocity of sound in 
the plasma ( VT), and the absence of the effect 
for hydrogen atoms follows apparently even from 
such a crude model. 

The authors are indebted to A. A. Vedenov, 
A. I. Larkin, and G. V. Sholin for useful discus­
sions. 
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