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The passage of ultrasound through a semi -metal in an electric field is investigated. It is 
shown that the interaction of conduction electrons with the sound wave leads to amplification 
of the latter if the electron drift velocity in the direction of sound propagation exceeds the 
velocity of sound propagation. The influence of a magnetic field on this effect is considered. 
It is noted that in many cases the presence of a strong magnetic field perpendicular to an 
electric field leads to a significant increase in the amplification factor of the sound. Various 
cases are considered of the resonance dependence of the amplification factor on the magni­
tude of the electric and magnetic fields. 

As is well known, the interaction of a sound wave 
with the conduction electrons affects its passage 
through a crystal. It is therefore evident that the 
presence of external electric and magnetic fields 
can have a significant effect on the intensity of the 
sound vibrations. In particular, amplification of 
ultrasound by the conduction electrons is possible 
for sufficient intensity of the electric field E. 

In the work of Watson, McFee, and White [1], 

evidence is given for the amplification of ultra­
sound in piezoelectric CdS in an electric field. 
The experiment was carried out at room temper­
ature, where there is appreciable absorption of 
ultrasound by the thermal vibrations of the lattice. 
However, in spite of this fact and in spite of the 
low concentration of conduction electrons, the 
strong piezoelectric coupling of the latter with 
the sound vibrations makes sound amplification 
possible. 

In our previous note, [2] it was recorded that in 
principle the possibility of amplification of sound 
by conduction electrons in an electric field does 
not depend on the concrete character of the inter­
action and is brought about by the Cerenkov radia­
tion of sound waves forced by the electrons. The 
latter takes place in the case in which the electron 
drift velocity in the direction of propagation of the 
sound wave exceeds its phase velocity s. 

1. Let the system of electrons be in a stationary 
state which is characterized by a drift velocity that 
is small in comparison with the characteristic elec­
tron velocities. We shall assume that the electron 
distribution function f0 depends on E ( p -Po ) , where 
E( p) is the energy of an electron with momentum p, 

and Po is the shift in the distribution of the elec­
trons in momentum space brought about by their 
drift. We emphasize that this drift can be caused 
both by an electric field E and by the temperature 
gradient V' T. 

The electron acquires an additional energy E' 

in the field of the sound wave, which in first ap­
proximation is proportional to the deformation 
tensor of the crystal: 

e' (p, r, t) = U0 (p) cos (xr -wt), 

where w and K are the frequency and wave vector 
of the sound, U0( p) is the amplitude value of the 
deforming potential with account of its screening 
by the electrons. 

We shall seek the electron distribution function 
in the form 

F (p, r, t) = fo {e (p- Po) + e' (p, r, t)} + f' (p, r, t), 

where the function f', in the linear approximation 
relative to U0, is determined by an equation that 
is similar to the equation of Akhiezer, Kaganov, 
and Lyubarskil [3J 

(a/at+ v·v + v) f' (p, r, t) =- dfofdt 

- - ofo {~ + [v - iJE(P- Po) J V } e' (p r t) (1) - oE at ap • • · 

Here T = v-1 is the relaxation time of the conduc­
tion electrons, v = aE(p)/Bp is the velocity of the 
electron with momentum p. We neglect the con­
tribution of the transverse electric field, brought 
about by deformation of the crystal under the action 
of the sound wave. Furthermore, in the evaluation 
of the derivative of f0 with respect to time in (1), 
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we have taken it into account that the collision in­
tegral, which is preportional to f0, cancels out the 
term leading to drift of the electrons. 

Solution of Eq. (1) has the form 

f, ( t) _ iJ~ [ _ ( )] R U0 exp i (.,;r- wl) 
p, r, - iJe w XVo P e (w- .,;v) + iv ' 

Vo (p) =~(Po iJ;~p)). (2) 

The sound energy absorbed by the electrons per 
unit time and per unit volume is equal to 

<d \' d3p , > Q = ([[ 2 .l (:2nh)" {e (p) + e (p, r, t)} F (p, r, t) , 

where the angle brackets denote the time average. 
Taking it into account that the total derivative with 
respect to time of the energy of the electron ( E + E' ) 

is equal to the partial derivative, while the corre­
sponding derivative of the distribution function F 
is zero, we can represent Q in the form 

Q = \ __!!__p_[U [2 iJfo{s(p-po)} w[w -~v0(p)J 
) (2Jth )3 0 iJs 

v 
X v2 +(w-.,;v)' 

or, with accuracy up to terms of second order in 
Po IPF ( PF is the Fermi momentum) 

(3) 

(4) 

where Q0 is the sound energy absorbed by the 
electrons at Po = 0. In the case Kl « 1 ( l = VFT 
is the length of the electron mean free path, vF 
is the Fermi velocity) Vos is of the order of the 
mean electron drift velocity of the system v0• In 
the opposite limiting case Kl » 1, the quantity Vos 
characterizes the drift of the electron moving in 
phase with the sound wave. 

Thus if w < K • Vos• then the sound absorption 
coefficient is negative and amplification of the 
sound waves by the electrons takes place. This 
is a consequence of the inequality of the distribu­
tion of electrons in the presence of the drift. In 
the case w < K • v0s. the probability of emission 
of a quantum by an electron is greater than the 
probability of absorption, and forced Cerenkov 
radiation of the sound takes place. 

The most useful crystal for the amplification 
of sound is apparently bismuth, in which the elec­
tronic sound absorption dominates the lattice ab­
sorption at low temperatures. On the other hand, 
the Joule power scattered in bismuth 

v 0 = eErim 

is relatively small, inasmuch as the concentration 

of electrons ne and their effective mass m in bis­
muth are small, while T is large. 

We now investigate the amplification of ultra­
sound in a semi-metal in crossed electric and 
magnetic fields, E 1 H. We consider the case of 
a strong magnetic field Qr » 1 ( Q = I e I H/mc, 
c is the velocity of light) and of strong spatial 
dispersion Kl » 1. In particular, we shall be in­
terested in a quantizing magnetic field tm » T, 
so that our considerations will have a quantum 
character from the very beginning. 

2. As is well known, stationary states exist for 
an electron in crossed electric and magnetic fields 
E and H. Let E II OX, H = curl A, Ax = Az = 0, 
Ay = Hx. Under such circumstances, the station­
ary states of the electron are characterized by a 
magnetic quantum number n, a projection of the 
wave vector in the direction of the magnetic field 
kz, and coordinate of the center of rotation X. For 
simplicity, the spectrum of the conduction electrons 
will be assumed to be quadratic and isotropic; we 
shall not take spin into account. Then the eigen­
functions and the energy eigenvalues have the 
form C4J 

"If nkzX (r) = r'J, (nLyLz)-'l•exp { i [kzz - r (X - eE/m Q2) y] 

- r (x -X)2/2} Hn [yy (x- X)], 

(5) 

y =I e I H/lic, Hn(v) is the Hermite polynomial of 
n-th order, normalized to unity, Ly and Lz are 
the dimensions of the crystal along the directions 
of the y and z axes. In what follows, we shall de­
note the choice of the quantum numbers nkzX by 
the Greek letters a, {3, etc. 

The stationary states (5) are characterized by 
a Hall electron drift along the y axis with velocity 
- cE/H. The mean electron velocity in the direc­
tion of E is equal to zero in the absence of scat­
tering. Interaction with the scatterers leads to the 
appearance of a conduction current. In this case 
the concentration of the electrons in the stationary 
states is homogeneous and their distribution func­
tion does not depend on X. By describing this non­
equilibrium stationary state by the distribution 
function F, we can represent it in the form of the 
sum F = f + f1• Here f1 is the part of the distri­
bution function (which is non-symmetric in the 
electron velocity) connected with the conduction 
current, while f is the symmetric part, depending 
only on the kinetic energy of the electron 

B~O) = /iQ (n + 1/2) + n2k;f2m. 

The symmetric part of the distribution function 
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of the electrons in crossed electric and magnetic 
fields was found earlier by the authors [SJ for the 
case of Boltzmann statistics. It was shown that in 
the scattering of electrons by neutral impurities 
and acoustic phonons, this function differs from the 
equilibrium function by the replacing of the lattice 
temperature T by an effective temperature 

Teff = T {I + --iJ (cE/sH) 2 (I + vifvpJ:i)}, (6) 

here Vi and llph are the collision frequencies of 
the electrons with impurities and with phonons. 

With the help of a method similar to that used 
in [5], it can be shown that for Fermi statistics, 
under satisfaction of the condition 

mvFs~T 

fa is the Fermi function of argument ( E~l - ?; )I 
Teff 0 , i.e., 

fa== f (e;0>) =[I + exp {(eio)- ~)I Teff}l- 1 , (7) 

where ?; is the chemical potential and Teff is de­
termined by Eq. (6). 

3. The Hamiltonian of the interaction of the elec­
tron with the sound wave has the form 

H' (t) = ~ (Ue-iwt + U+ei"'t), 
(8) 

here Uik = ( aui I axk + auk I a xi ) I 2 is the deform a­
tion tensor, u£f2 is its amplitude value; Aik is the 
deformation-potential tensor, which can be taken 
as a constant for bismuth; use of the repeated in­
dices i and k in (8) denotes summation; the sign 
+ denotes the Hermitian adjoint. 

In the case Kl » 1, and in the absence of any 
sort of resonance, the effect of electron scattering 
on the absorption and emission of sound quanta can 
be neglected; the sound energy Q absorbed by the 
electrons per unit time has the form [S] 

Q = i,; ~ (efl- 8a) {\ U fla 12 6 (efl- Ba -1iw) 
afl 

+I u;a 12 6 (efl + 1iw- 8a)} fa (I - f!J), (9) 

here Uf3a is the matrix element of U between the 
wave functions a and {3; we have neglected the 
contribution of the small non-symmetric part of 
f1 in Q. Reordering the summation indices a 
and {3 in the second component in the curly brack­
ets, and taking the law of conservation of energy 
into account, we get (9) in the form 

Q = ~~~I Ufla 12 {) (efl- Ba -1iw) [f (ei0>) - f (e&0>)l. (10) 
o;fl 

1lThe authors are grateful to V. L. Gurevich who pointed 
out this circumstance to them. 

Direct calculation of the matrix element U a' a 
leads to the expression 

I Va•al =I Vol Q~n'-n) (x3_/2r) {) (k~. kz + Xz) {)(X', X -xufr), 

Q;;'l (v) = e-vf2vkf2L;:'l (v), (11) 

Lhkl(v) is the associated Laguerre polynomial 
normalized to unity: 

x3_ =X~+ X~. 

It follows from the conservation laws that 

8~0) - e:.o) = eE (Xfl - Xa) + nw = fi (w - XyVy). 

Vu =-eEl H. (12) 

By assuming the difference in the energies (12) to 
be small in comparison with Teff• we get 

(13) 

Thus, if the Hall electron drift velocity is 
larger than the sound velocity, and the direction 
of the wave vector K is close to the direction of 
the Hall current, then the difference (13) is nega­
tive. This means that in the absorption of a sound 
quantum, the electron enters a state with higher 
population. In radiation of the same quantum, the 
kinetic energy of the electron is increased and it 
enters a state with smaller population. Therefore 
the probability of emission of similar phonons is 
shown to be greater than the probability of their 
absorption. This fact is a consequence of the non­
equilibrium character of the system, which ap­
pears in the fact that the distribution function fa 
does not depend on the coordinates of the center 
of rotation Xa, while the total energy of the elec­
tron possesses the component - eEXa. 

4. We first consider the case Kz = 0. We sub­
stitute (11) and (13) in (10), and carry out summa­
tion over the quantum indices kz and X. Setting 
af( E )Ia?;:::::! o( E- ?;), and taking it into account that 
the number of states of the electron with different 
X is equal to YLxLy 1271" ( Lx is the dimension of 
the crystal along the x axis, V = LxLyLz ), we 
get 

Q = w (w- XyVy) I Uo 1
2 5~ ~ [ \;-li~~ + 112l' 

n 

00 2 2 

X k~J Q~k) ( ;¢) J 6 (w- XyVy- kQ), (14) 

where the summation is carried out over all n for 
which the radicand in (14) is positive. If the values 
of E, H, and K are such that the argument of the 
o-function in (14) vanishes at any positive k, then 
resonance sound absorption is observed. If the 
vanishing of this argument takes place for any 
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negative k, then resonance amplification of the 
sound wave takes place. This resonance is similar 
to the cyclotron resonance in sound absorption in 
metals in a magnetic field, which was predicted by 
Mikoshiba [7] and observed in Ga by Roberts. [B] 

However, owing to the presence of the electric 
field, not only resonance absorption is possible, 
but also resonance amplification. Moreover, it 
should be noted that the cyclotron resonance ab­
sorption (amplification) is also possible for WT 

« 1 in the presence of an electric field, provided 
that HT » 1. 

We shall now consider in more detail the case 
in which the argument of the o-function in (14) 
vanishes for k = - 1. In this case, the change in 
the potential energy of the electron in the electric 
field fiKyVy results in the increase Of its kinetic 
energy by n and in the emission of a sound quan­
tum with energy nw. 

Making use of the asymptotic form of the La­
guerre function for n » I k I, n » v: 

Q<:> (v) = Jk IYv (4n + 2J kl + 2)1, (15) 

where Jk is the Bessel function of order k, and 
replacing the summation over n in (14) by integra­
tion, we put the coefficient r in the form 

r = - Q2w-1A (xR) 0 (w - XyVy + Q) fo; 
1 

A (v) =v~dxJi(vY1-x2 ), (16) 
0 

where 

f 0 = m2 1 U0 l2/2nn3 pu~sx 

is the sound absorption coefficient for E = H = 0, [3] 

p is the density of the crystal, R = VF/Q, for 
v » 1 the quantity A(v) - 1. 

The expression (16) becomes infinite if the ar­
gument of the o-function vanishes. For all other 
values of the argument, r = 0. This result is a 
consequence of neglect of electron scattering, 
( T - oo). Account of scattering leads to a finite 
relaxation time for the electrons T and to a finite 
width of the energy levels, equal to n/T. There­
fore, the o -function has the order of T at reso­
nance and the maximum value of the sound ampli­
fication coefficient is 

(17) 

5. We now consider the case of stronger mag­
netic fields H, satisfying the condition 

IXvVu [ ~ Q, 

and small but non-vanishing Kz: 

(18) 

(19) 

In this case, the argument of the o-function van­
ishes in (10) only for n = n', and the expression 
for Q takes the form 

co 

Q = ~~ w (w - XyVy) I U0 12 ~ I Q~o) (xl/2y)l2 

n=O 

+f iJf(E~~.J (li:x.k. ) 
X .) dkz -0-~- /) -m· - ffi + XyVy • (20) 

-co 

Carrying out the integration over kz in (20), and 
using the asymptotic form (15), we write the co­
efficient r in the form 

w liQ "V 12 ( "I /2n + 1) h-2 r = fo-;w-.LJ 0 Xj_ v-- cos Gn; (21) 
8 eff n Y 

Gn =I~- fiQ (n + ~) - mw2/2.1 /2Teff, 

W = (w - XyVy) I I Xz I· (22) 

Upon decrease in I Kz I, the value of I w I in­
creases. Therefore, at sufficiently small I Kz I, 
the absolute value of w becomes larger than VF, 
and the coefficient r approaches zero exponen­
tially. In what follows, we shall be interested in 
such Kz for which I w I < vF. 

Let us investigate (21) in various limiting cases. 
a) In the case nQ « T eff• summation over n in 

(21) can be replaced by integration. For not too 
high frequencies of the ultrasound, when 

(23) 

the value of the Bessel function in (21) is close to 
unity, and 

(24) 

i.e., the absorption (amplification) coefficient of 
sound in the presence of a magnetic field can be 
VF Is times larger than in its absence. 

b) In the case of a quantizing magnetic field 
nQ » Teff and K~l2 » N [s] the summation in (21) 
can be limited to a single term with n = N for 
which the quantity ~n is minimum. Then 

r = f0 ~ J~ (xj_RN) 4;n cosh\-2 ~N, (25) 
5 eff 

where RN = -./ ( 2N + 1 )/y is the Larmor radius of 
the electron with magnetic quantum number N. 

In the change of the magnetic field in the case 
(23), the value of r (25) undergoes strong oscilla­
tions, similar to those studied in the work of Gure­
vich et al. [iO] The origin of these oscillations is 
the following. It follows from the laws of conser­
vation of energy and momentum that only electrons 
with Vz = w sign Kz can absorb and emit sound 
quanta. In the case nQ » Teff• such electrons can, 
upon change in the magnetic field, turn out to be in 
the region of smearing out of the Fermi distribu-
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tion or outside of it. Here the argument of the hy­
perbolic cosine ~N varies over the range from 
zero to 1H2/4Teff• which produces oscillations of 
r as a function of H. However, in the case under 
consideration, the value of w determined by Eq. 
(22) depends on H, as a consequence of which the 
period of these oscillations is different and is 
given by the formula 

!:l.H/H = hQ [ ~ - mw (iw - w/ I Xzi)l-1 ; (26) 

here D.H is the difference between neighboring 
maxima. Equation (26) for the period of oscilla­
tions is applicable when the absolute value of the 
right hand side of (26) is small in comparison with 
unity. 

The value of w also depends on the electric 
field E. Therefore, upon a change in the latter, 
~N also varies in the range from zero to nQ/4Teff· 
This leads to similar oscillations of r as a func­
tion of E. 

In the case 

(27) 

the Bessel function in (25) oscillates upon variation 
of the magnetic field, and oscillations of "geomet­
ric resonance" are superimposed on the quantum 
oscillations of the coefficient r. The explanation 
of this resonance was first given by Pippard. [ 11 ] 

The resonance maxima and minima are also ob­
served in the case in which a half-integral number 
of sound wavelengths is included in the orbit of the 
electron. In the case under consideration quantiza­
tion of the electrons leads to the result that the 
amplitude, period and phase of these oscillations 
differs from the corresponding quantities in the 
case nQ « T. In particular, the amplitude of the 
oscillations of the "geometric resonance" in (25) 
is not small. The period of the oscillations de­
pends in a rather complicated way on the magnetic 
field, and we shall not write out their expression 
here. 

Thus, if the Hall velocity of the electrons is 
larger than the sound velocity, and the direction 
of its propagation is close to the direction of the 
Hall current, then interaction with electrons leads 
to amplification of the sound waves. However, in 
passing through a crystal, the sound is attenuated 
as a result of the interaction with the thermal vi­
brations of the lattice and with defects. Therefore 
the resulting coefficient of amplification rT is the 
difference of the electron amplification coefficient 
- r and the coefficient of absorption due to other 
interactions r 1: 

We are interested in the case in which the elec­
tron coefficient r is negative and rT is greater 
than zero. The coefficients r and r 1 again de­
pend on the value and direction of the wave vector 
of the sound K. In most cases, the coefficient r 
is proportional to K, while r 1 increases more 
rapidly with increase in K. Therefore, close to 
some definite value of K, the amplification coeffi­
cient of the sound rT reaches a maximum value. 
By changing the value of the electric and magnetic 
fields, one can change the value of this optimal 
Kopt· Corresponding values of rT can be very 
large in value which in principle makes it possible 
to amplify thermal phonons with K ~ Kopt• i.e., to 
use this effect for the generation of ultrasound of 
high frequencies. We note that the resonant de­
pendence of the expressions (16) and (25) on the 
value of K corresponds to amplification of a col­
lection of definite discrete frequencies. 

The authors are sincerely grateful to I. P. 
Ipatov, 0. V. Konstantinov, V. I. Perel', G. M. 
Eliashberg, and A. L. Efros for discussion of the 
work. 
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