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The singularities in the dispersion law of phonons, caused by the electron-phonon interaction, 
are analyzed by using the Green's function method. It is shown that the character of the sin­
gularity is essentially related to the shape of the Fermi Surface. If one of the radii of curva­
ture is large (Fermi surfaces almost cylindrical, for instance) then a root-type singularity 
occurs instead of a logarithmic one [l] in the derivative of the frequency with respect to the 
wave vector. If both radii of curvature are large (almost flat Fermi surfaces ) a singularity 
of the form 1/x appears. In the latter case a significant absolute rearrangement of the spec­
trum can also arise. 

1. INTRODUCTION 

SoME time ago Kohn[1J, starting from model 
systems, called attention to the fact that for pho­
nons with a wave vector of magnitude q = 2p0 

(Po is the limiting momentum of a spherical 
Fermi surface) the electron-phonon interaction 
brings about a logarithmic singularity in the de­
rivative of the frequency w with respect to q. 
Later the work of Brockhouse [2] appeared, in 
which a direct observation of such a singularity 
in the phonon spectrum of lead was reported, 
based on experiments with cold neutrons. The 
connection between the position of the singulari­
ties and the properties of the Fermi surface offers 
the attractive possibility of an independent deter­
mination of this surface by measuring the phonon 
spectrum. Since the Fermi surface of real metals 
has a complicated shape, the question arises of 
the character of the singularities occurring for 
such cases in the phonon dispersion law. As is 
shown in the present work, an abrupt intensifica­
tion of the singularities and a noticeable rearrange­
ment of the phonon spectrum arise for a certain 
class of surfaces. This appears especially clearly 
for Fermi surfaces which are nearly cylindrical 
or planar. These cases are considered in detail 
below. 

In this work the double-time Green's function 
method is used for the consideration of the electron­
phonon system at T = 0. This method was applied 
consistently for the first time by Migdal [3] to an 
isotropic model. 

2. GENERAL FORMULAE 

We write the Hamiltonian of the electron-phonon 
system in the usual form 

H = 2] e~a;ap + 2] w~b~bq + 2] Aqa;+q ap (bq + b~). (1) 
p q P. q 

In this connection we assume that the electron and 
phonon branches of excitations in the crystal have 
the arbitrary laws E~ and w&. For simplicity we 
neglect the periodicity in the reciprocal lattice 
space. To find the phonon spectrum we look for 
the Green's function D( q, w), the poles of whose 
analytic continuation determine the dispersion law 
and the damping. 

The Dyson equation for this function can be writ­
ten down in the following form: 

v-1 (q, w) =D;1 (q, w) + TI (q, w), 

where the polarization operator II is defined by 
the relation 

n (q, w)=i~G(p +f, e +~)a(p- i, e-~) 
X f ( . ) dp da p, e, q, w (2Jt)'. 

(2) 

(3) 

Here G( p, E) is the electron Green's function and 
r ( p, E; q, W ) the vertex part. 

In all the following calculations we are inter­
ested only in G0, the Green's function in the ab­
sence of the electron-phonon interaction: 

G0 (p, e)= (e- eg + il1t1 , 

11 = {+ 0 e~ > ep 
-0 eg< ep. (4) 
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The analogous expression for Do takes the form 

Do (q w) = A2q { 1 - __ 1_~} 
' 0 + 'b + 0 'b ' (J)~(J)q ! (J) (J)q~! 

b~+O. 

(5) 

According to such a definition the vertex part in the 
first approximation is r 0 = 1. 

In the usual analysis of the electron-phonon in­
teraction we need consider only this simple vertex 
part, since the following graphs are of order 
(m/M) 112 [ 3J. However, for a certain class of 
Fermi surfaces, this is not the case and the prob­
lem of the renormalization of the vertex part can 
be essential. As is shown below such a situation 
arises for nearly planar surfaces. In all remain­
ing cases we can replace r by 1 in (3). 

It is well known that a noticeable change of the 
electron excitation spectrum due to the electron­
phonon interaction occurs only in a very narrow 
shell of order Wmax (maximum frequency of the 
phonon spectrum) around the Fermi surface. (The 
corresponding scale in momentum space is ~ ~ 

Pow/ EF, where Po is a typical momentum of the 
Fermi surface). In the integration in (3) over all 
variables the four-dimensional volume correspond­
ing to this shell plays a negligibly small role and 
we can replace G by G0 in that expression. Then, 
putting r = 1, we find after integrating over the 
energy 

(6) 

3. NEARLY CYLINDRICAL FERMI SURFACES 

We begin by considering the cases where the 
Fermi surface is similar to the surface of a cir­
cular cylinder of radius Po whose axis we choose 
as the z axis. Then 

e0 = p2 I 2m*. p _j_ (7) 

Transforming to a cylindrical coordinate system 
in (6) and bearing in mind that we are interested in 
values q1 for which automatically qi /2m* » w, 
we find the following expression for the polariza­
tion operator 

m* Pzo { 1 ( 4p~ 4mw)'/, Re TI (q, w) = zn2 Re 1- 2 1--2- -~2~. 
q_j_ qJ.. 

_ _!_ ( 1- 4p~ + 4n!w)'1'}, 
2. q3_ qJ_ 

• {( 4 2 '/• Im TI(q w) = m Pzo Im I-~- 4mw) 
' 4Jt2 2 2 . qJ.. q_j_ 

_ ( 1- 4p~ + 4mw)'/,}. 
q3_ q3_ 

(8) 

We now find the dispersion law and the damping 
of the phonon branch of excitations. We introduce 
the notation w = wq- iyq; then we obtain from (2) 
and (5), assuming Yqlwq « 1 

(9) 

From (8) and (9) follows the important result 
that in the case of a cylindrical Fermi surface 
aw/aql has a root singularity at q = 2p0 in con­
trast to the weak logarithmic singularity for a 
spherical Fermi surface [i J. This point is a point 
of discontinuity of the phonon spectrum: the deriv­
ative approaching from the side q1 < 2p0 is finite, 
while on approaching from the side ql > 2p0 the 
derivative increases sharply by going to infinity. 
In addition there is no damping in the region q1 
> 2p0 + 2mwq1Po· In the reverse case, ql < 2p0 

- 2mwq I p0, the ratio Yq I wq ~ wq IE F but directly 
in the shell Yqlwq ~ (wq/EF) 1/2. The transition 
occurs in a narrow interval of wave vectors of the 
order of ~ and thus the quantity Yq/wq has a 
sharp narrow peak for q1 RJ 2p0• Such a depend­
ence is strongly distinct from the case of a spher­
ical surface, to which corresponds a smooth curve 
with a sharp discontinuity and where for q ~ 2p0 

the ratio Yq/wq ~ wq/EF· 
We give here, for purposes of comparison, the 

value of the real part of the polarization operator 
for a spherical Fermi surface (obtained from (6) 

for E~ = p2/2m): 

R e TI ( q, ffi) = mp0 [ 1_ 1 - ( q !2Po)2 In 11 + q /2p0 IJ . 
4Jt2 q I Po 1 - q !2Po 

This expression is valid for q > 2p0 as well as 
q < 2Po· 

(10) 

Figure 1 shows the dispersion curves close to 
the point q = 2p0, for the cases of a spherical (a) 
and a cylindrical (b) Fermi surface. 

Since the transition from a spherical to a cylin­
drical surface implies a strong increase of the 
singularity, it is natural that the question about 

'------2J..p.---lj 
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FIG. 2 

the stability of the results against a deviation from 
strict cylindricality arises. For an analysis of 
this question we consider the axially symmetric 
case for which the dispersion law for the electrons 
is of the form 

8~ = p3_12m* + 8 1 (p2 ). (11) 

The Fermi surface corresponds, obviously, to a 
certain functional dependence p0(pz) (Fig. 2). It is 
easy to check that the polarization operator (6) for 
the region ql /2 > Pmax• where Pmax is the maxi­
mal value of p0(pz ), is determined by the formula 

m* ~ n (q, ro) =42 dpz 
Jt ' 

X [ 1 1 (2 ' + 2 2 ( ))'/• J - Pmax Pmax q Pmax- Po Pz • 

Here q' = ql/2 - Pmax and it is assumed that 

WPmaxi8F ~ q' ~ Pmax• 

From (12) and (9) we get 

(12) 

aw 8w0 A 2m* \ 
q ~ q ' q . dp (2p q' + p2 p2 (p ))-'/, 

aqj_ ~ aqj_ I 4Jt2 , z max max- o z (13) 

Assume, next, that within a certain interval 

81 (pz) = ap~. 

It can easily be shown that here the second term 
in (13) contains a singularity of the form 

( q' /pmax) -( 112- 1/n) ( n > 2). Thus if the expansion 

of the energy with respect to Pz around a certain 
point begins with a power higher than the second 
we arrive at a root singularity with the root expo­
nent smaller than Y2• 

If n = 2 then there occurs a factor of the form 
a-1/ 2 ln (Pmax/q') in the second term on the right 
of (13). The singularity now has a logarithmic 
character just as in the spherical case. However 
there appears a sharp increase due to the a-1/2 
in the denominator in all cases where the deviation 
from cylindricality has a small amplitude (we note 
that if the energy surface forms an ellipsoid of 
revolution the singularity increases with an increase 
of the ratio of the semiaxes). 

The whole situation with the singularities in the 
case considered can be most clearly traced in the 

example of a Fermi surface in the form of a cor­
rugated cylinder. Let 

81 (pz) = a sin2 (bp2 ). 

Hence from (13) we obtain 

where K is the complete elliptic integral of the 
second kind. If the corrugation of the cylinder is 
small, i.e., (2m *a )112 « Pmax• then the second 
term in (13') as a function of q' has two special 
regions. For 

2ma/p';.ax< q'/pmax < 1 

this term depends on q' as ( q') - 1/ 2, just as in the 
reverse limiting case q' /Pmax < 2m *a/pfu.ax it be­
comes proportional to 

p20 (4m*a)-'1'ln (16m* a I Pmaxq'). 

Thus the root dependence is maintained in this case 
for the basic region of change of q' and the transi­
tion to a logarithmic dependence occurs in an in­
terval of the order of the amplitude of corrugation. 

4. NEARLY PLANE FERMI SURF ACES 

The increase in strength of the singularity on 
going over to nearly cylindrical Fermi surfaces is 
connected with the growth of the phase volume cor­
responding to the creation of an electron-hole pair 
with fixed total momentum. In fact an analogous 
situation will arise each time the Fermi surface 
has a significant region where one of the radii of 
curvature is large in comparison to p0• It is clear 
that the maximal increase of the phase volume oc­
curs with Fermi surfaces (or parts of a surface ) 
approaching a plane, when both radii of curvature 
are large. (Similar parts of the Fermi surface 
always arise in pairs since in any crystal E~ = E~p·) 

We consider the limiting case corresponding to 
a completely plane surface. However before calcu­
lating the polarization operator we have to analyze 
further the vertex part in view of the extreme char­
acter of the case considered. We determine the 
correction to r in first approximation described 
by the graph represented in Fig. 3. The expression 
for r 1 takes the form 

r,----<( 
F1G. 3 
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rl(p,e;q,w) 

XD0 (p- p', e- e') dp' de'. (14) 

We shall be interested merely in values q ~ 2p0• 

It is then easy to see that the small p' correspond­
ing to the merging of the poles of both Green's 
functions give the main contribution in (14). With 
this in mind we neglect the dependence of w~-p' 
on p' in D0• 

For the planar case we have as the quadratic 
dispersion law 

Thus one can use the unrenormalized vertex r 0, 

and consequently the expression for the polariza­
tion operator (6), for the practically most interest­
ing region of q' in the determination of the polari­
zation operator for nearly plane Fermi surfaces. 
However the determination of II for q' ~ w/2v0 

requires a consistent renormalization of the ver­
tex part. 

Having in mind the domain of q' corresponding 
to (18) we find a value of the polarization operator 
(6). Taking (15) and (16) into account, we obtain 

(19) 

e0 = p 2 I 2m·. p z 
(15) This expression is valid for both q' < 0 and q' > 0. 

We introduce the notation 
It follows from (9) and (19) that Bw/Bqz behaves 

like 1/q' for the most interesting domain (18) of 
qzf2= Po+ q', 

Then we have for G0 in (14) 

G0 (p ± q/2, e ± w/2) 

v0 = p0/m*. (16) the wave vector and that as a consequence the sin­
gularity in the phonon spectrum due to the electron­
phonon interaction becomes very sharp ( cf. the 
curve c in Fig. 1 ). 

= [e ±w/2- V0 (q' ± p2 ) + i/1 (q' ±p)J-I 

( E is reckoned from the Fermi energy E F). 
Integrating first over p~ and then over E' we 
finally find: 

R r _ A~ [ 1 I I (v0q')2 -(ro/2)2 I e 1 --- n 
2 (2:rt)3 v0q' + ffi~- 8 (8- ro~)2 - (ro /2)2 

- n - Px PY, 1 I I (voq')•-(ro/2)2 IJ m* ~d d 
v0q'-w~-8 (8+ffi~)2 -(ro/2)2 Po 

- e(- e -w~- T)J}~* ~ dpxdpy. (17) 

It follows from (17) that, as q' - w/2v0, r 1 

goes logarithmically to infinity in the whole domain 
of p and E, and that as a consequence it becomes 
necessary in this case to renormalize the vertex 
part. However, this situation occurs only within a 
narrow strip ~ ~ close to the Fermi surface. Ac­
tually, for 

(18) 

we obtain for the domain of the variables essential 
to the determination of the polarization operator 
(3) directly from (17) 

rl ~ (J) I Voq' 

One can easily conclude from formula (19) that 
in the case considered there can also occur an es­
sential absolute rearrangement of the spectrum in 
the region (18). Effectively, the presence of the 
large factor In( 4EF /v0q' )2 in (19) in comparison 
with (8) and (10) makes such a renormalization 
quite real in the absence of a small parameter in 
the electron-phonon interaction. 

In order to determine the character of the re­
normalization of the phonon energy we evaluate the 
quantity ~- Neglecting Umklapp processes, the 
usual calculation leads to the expression 

2 q2Uo I q • 12 2 
Aq = 2Mroq q ]q Cq. (20) 

Here jq is the polarization vector of the phonon, 
Cq the Fourier component of the electron-lattice 
interaction potential referred to the volume of the 
elementary cell U0• We introduce the notation 
Cq = .8qEF· Generally one takes .Bq ~ 1 in all 
calculations. 

In the case of interest to us q ~ 2p0• Then the 
relative change of the frequency due to electron­
phonon interaction is determined by the expression 

(21) 

(21') 

where V0 is the volume of the elementary cell of 
the reciprocal lattice (the integration is extended 
only over the first cell of the reciprocal lattice). An 
analysis of the expression (21') shows that even 
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FIG. 4 

though this coefficient is smaller than unity the ab­
sence of a small parameter leads under favorable 
conditions (in particular if an essential part of the 
surface area is nearly planar) to a considerable 
quantity. But in this case, as is directly seen from 
(21), a strong drop of wq occurs for qz "' 2Po· 

Figure 4 shows the shape of the dispersion 
curve of wq corresponding to the case considered. 
The depth of the dip in the dispersion curve is con­
nected with the size of the coefficient (21'). We 
note that a very strong diminution of the frequency 
near qz = 2p0, whichcannotbe excluded in principle, 
could lead to a considerable change in the energy 
dependence of a whole series of quantities, since 
there could appear phonons with large wave vector 
but relatively small energy. 

In order to analyze how the character of the sin­
gularity ceases to be planar at small deviations of 
the Fermi surface, we can proceed in analogy to 
what we did in the case of cylindrical surfaces. 
Let the Fermi surface be defined by the equation 
Pz = Pz(Px. Py ). For definiteness we consider 
q' > 0, whence we shall understand Po to be the 
maximum value of Pz for the part of the surface 
considered. Then, introducing the notation 

D.p (px, Py) = Po - Pz (Px. py), 

for the term in ow/oqz due to the electron-phonon 
interaction, we find an expression proportional to 

~ dpxdPy 

~ q' + !'J.p (px,Py) • 

Hence it is seen immediately that if, for example, 
the Fermi surface is a plane corrugated in one di­
rection, then for q' larger than the corrugation 
amplitude Bwq/Bq- 1/q', and for q' « o, the 
singularity becomes rootlike. If ~k"' pSrn then 
owq/oqz will behave like (q')- 1+1 2n. 

A similar analysis can easily be carried out 
for most different cases. It is clear that for small 
deviations of the surface from a plane, in the pres­
ence of arbitrary deviations in one direction and in 
the presence of a region of flatness-in all these 
cases the singularity in Bwq/oqz becomes con­
siderably stronger than in the case of almost 
spherical Fermi surfaces. 

We remark that in the case of a plane Fermi 
surface the phonon damping is zero for the whole 
domain of qz except a narrow strip "' ~ near 
qz = 2Po· 

5. CONCLUDING REMARKS 

Inelastic neutron scattering experiments afford 
the possibility of detecting singularities in the pho­
non spectra of metals, and under favorable condi­
tions even the phonon width. However the deter­
mination of the behavior of wq within a strip 
around the Fermi surface corresponding to ~q 
"' wp0 /EF is made very difficult by the experimen­
tal setup. Therefore in the first place one has to 
wait for an investigation of the course of the dis­
persion curve for the wave vector interval deter­
mined by (18). However it follows from the re­
sults of the preceding section that an anomalous 
course of the wq curve clearly appears in that 
region, particularly if there are significant parts 
of the Fermi surface corresponding to one or both 
radii of curvature large compared to p0• Obviously 
the latter situation can be very easily realized in 
the case of open surfaces. Thallium can be called 
an example of a metal with an almost plane Fermi 
surface, where the singularity should show up par­
ticularly strongly ( N. E. Alekseevskil, private 
communication). 

The weak logarithmic singularity in the case of 
nearly spherical Fermi surfaces is in all probabil­
ity very hard to detect experimentally. The dis­
persion curve found by Brockhouse for tin, if it is 
true, clearly shows a stronger singularity. One 
has to observe that the course of the curve cor­
responds to the case where at least one of the 
radii of curvature is large though the vagueness 
of the experimental resolution makes this state­
ment conditional. 

In those cases, where the damping due to the 
electron-phonon interaction represents a consid­
erable part of the general phonon damping with 
q ,..;. 2p0, a real possibility of getting information 
about the Fermi surface on the basis of measure­
ments of the phonon width, particularly consider­
ing the sharp jump of 'Yq at q = 2p0, opens up. It 
is interesting that the character of the dependence 
of 'Yq on q differs strongly for the various types 
of Fermi surfaces as shown in the previous con­
siderations. 

In conclusion we observe that the results ob­
tained in the present work can be directly applied 
to an analysis of the singularities in the dispersion 
law of spin waves due to the electron -phonon interaction. 

The authors thank L. P. Pitaevskii for a valu-
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