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Equations for the scattering amplitude for a system of three particles are derived in the 
linear approximation in E 112r 0, assuming short-range resonance-type forces between the 
particles (E is the energy of the system, r 0 is the range of the forces). In this approxi
mation the scattering amplitude can be expressed in terms of the zero-energy two-par
ticle amplitudes, the energy of the three-particle bound state, and the range of the forces. 

INTRODUCTION 

AN equation for the wave function of a system of 
three identical particles interacting via short-range 
resonance-type forces has been obtained by Skorny
akov and Ter-Martirosyan (STM) [i] in the limit 
r 0 - 0, where r 0 is the range of the forces. This 
equation has been investigated in a paper of the 
author. l:2J It was shown in [2] that this equation 
has a non-unique solution. In choosing the solution, 
one must require that the wave functions for differ
ent energies be orthogonal to one another. The am
plitude for the scattering of one of the particles on 
the two remaining particles can be expressed in 
terms of the two-particle amplitudes and a single 
three-particle parameter, for example, the energy 
of the three-particle bound state. The non-unique
ness of the solution of the STM equation is con
nected with the fact that a three-particle system 
collapses into the center in the limit r 0 - 0. [3, 4] 

As a result of the collapse into the center the 
STM equation gives rise to an infinite number of 
levels for the system of three particles interacting 
via resonance-type forces. However, we must con
sider only those levels whose energies satisfy the 
inequality I ME/ti l112r 0 « 1, since the other levels 
lie outside the range of applicability of the theory. 
For realistic values of r 0 and a 0, only one level 
lies within the range of validity of the theory. The 
energy of the next level is, according to Minlos and 
Faddeev, [4] about 1000 times larger in absolute 
value than the energy of the former. Minlos and 
Faddeev [4, 5] express the opinion that the presence 
of an infinite number of levels casts some doubt 
on the validity of the STM equation. Actually, the 
presence of levels so remote cannot affect the 
validity of the STM equation for real systems, but 

simply reflects the fact that three nucleons could 
form two bound states if the range of the forces 
were 'l'50 of the actual range. 

Minlos and Faddeev [s] have proposed a set of 
equations for the description of a three-particle 
system with short range forces which is different 
from the STM equation. However, as will be shown 
in the present paper, their equations are valid only 
in the presence of three-body forces with a range 
R0 » r 0• We shall not consider such forces, since 
they are not in agreement with our present ideas 
of the interaction mechanism between particles. 

In Sec. 2 of the present paper we shall derive 
an equation for the determination of the scattering 
amplitude for a system of three particles with an 
accuracy up to and including terms "' I ME/ti l112r 0• 

In this approximation the three-particle amplitude 
is expressed in terms of the two-particle ampli
tudes at zero energy, the range of the two-body 
forces r 0, and the energy of the three-particle 
bound state. The method of deriving this equa
tion is illustrated in Sec. 1 on the example of the 
two-body problem. For simplicity we shall as
sume that all particles are identical and spinless. 
The generalization to other cases is obvious. 

1. TWO-PARTICLE WAVE FUNCTION ACCURATE 
TO TERMS "' kr0 

In order to illustrate the method to be used later 
for the derivation of the three-particle wave func
tion, we consider first the scattering for a system 
of two identical spinless particles. The equation 
for the wave function 1/J( r) of this system is 

~ e'"kfr-r'l 
"¢ (r) = efkr + · v (r') "¢ (r') d3r'. 

) r- r' I (1) 
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Here k is the wave vector in the center of mass 
system (c .m. s.) and the quantity v ( r) is related 
to the potential V( r) by 

v (r) =- MV(r} I 4nn2 , 

where M is the mass of the particle. 

(2) 

For kr0 « 1, r ;:; r 0, where r 0 is the range of 
the forces, Eq. (1) can be written as 

1jJ (r) = 1 +~I r~ r' I v (r') 1jJ (r') d3r' 

+ ( ik - k2
; 0 ) ~ v (r') 1jJ (r') d3r' + ~1 (r) -+- ~2 (r); (3) 

~dr) =-~~(I r- r' 1- r 0) v (r')1Jl (r') d3r', (4) 

where r 0 is some parameter of the order of mag
nitude of the range of the forces. The parameter 
r 0 will be defined more precisely below. The quan
tity b.2( r) contains terms ~ kr and k3r5a0 arising 
from the expansion of the exponential in (1). 

Let us introduce the function '¢< r) defined by 

1jJ (r) = A\i) (r), (5) 

A = 1 + ( ik - k2
; 0 ) ~ v (r') 1jJ (r') d3r'. (6) 

The function '¢< r) satisfies the equation 

~ (r) = 1 + ~ 1 r ~ r' I v (r') ~ (r') d3r' + 31 (r} + 32 (r); 

'X1 (r) =~1 (r)/A,3 2 (r) =~2 (r)/A. (7) 

We solve Eq. (7) by regarding bo1 ( r) and b.2( r) 
as inhomogeneous terms. For this purpose we in
troduce the eigenfunctions Cfn ( r) of the equation 

!Jln(r) =An~lr~r'l v(r')cpn(r')d3r'. (8) 

It is easily seen that the functions cpn ( r) corre
sponding to different values of A.n satisfy the 
condition 

~ !Jln (r) v (r) !Jlm (r) d3r = 0 for n =I= m. 

We can therefore assume that the functions Cfn ( r) 
are orthogonal to one another with weight v ( r) 
and are normalized to unity: 

(9) 

With this normalization, the function I r- r' 1-1 is 
equal to 1> 

!)Formula (10) follows from the general theory of integral 
equations[ 6 ] if the potential v(r) has no zeros anywhere. It 
can be shown that (10) is valid for all potentials for which 
the right-hand side of (10) converges. However, as will be 
shown below, the results of this section are also valid when 
the right-hand side of (10) has no meaning. 

__ 1_ = ~ ((ln (r) ((ln (r') 
I r- r' I 21 "-n • (10) 

It is seen at once that '¢< r) is given in terms of 
the functions Cfn ( r) according to the formula 

~ (r) ='llo (r) + 31 (r) + 32 (r) 

~ ((ln(r) \ ~ ~ + LJ T _ 1 j !Jln (r') v (r') [ ~ 1 (r') + ~2 (r')] d3r', (11) 
n~=l n 

where 

1jl0 (r) == 1 + ~ · ((ln (r)- \ !Jln (r') v (r') d3r' 
'A -1 .J 

n=l n 

(12) 

is the wave function of the system at zero energy, 
which satisfies (7) without the last two terms. It 
follows from (12) that the zero energy amplitude 
a 0 is equal to 

(13) 

If the system has no real or virtual level for 
energies E = E 0 « r 02n2M-1, then a 0 ;:; r 0• We 
shall be interested in the case when there is such 
a level. Then a 0 ,...., I ME 0 /n2 1112 » r 0• The ground 
state wave function Cfd( r) then satisfies the equa
tion 

!Jld (r) = \' - 1-, I v (r') !Jld (r') d 3r' (14) .l1 r- r 

up to terms of order ,...., r 0 /a0 relative to the main 
term. Comparing this equation with (8), we see 
that in this case one of the A.n, which we shall de
note by A., is close to unity. The function CfJn ( r) 
with A.n = A. will be denoted by cp ( r). Evidently, 
cp ( r) is spherically symmetric, since it coincides 
with the bound state wave function Cfd ( r) up to 
terms ,...., r 0 /a0• 

The integrals r0 = ~v (r) d3r and .rn = [~ !Jln\(r) v (r) d3r r 
remain finite as I A. -11 - 0 and are small com
pared to a 0 for sufficiently small I A.- 1 1. These 
quantities are in general of the order of magnitude 
of the range of the forces. Indeed, it follows from 
(11) that for krn ,...., 1 not all the terms in the sum 
over n are small, and the determination of the 
function '¢< r) requires the knowledge of the func
tions cp n ( r ) , which are in turn determined by the 
shape of the potential. The condition kr0 « 1 has 
been used by us in obtaining Eq. (3). Thus the 
parameters ro and rn determine the effective 
range of the interaction. We shall therefore re
gard kr0 and krn as small parameters and deter-
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mine the function '¢< r) with an accuracy up to 
terms ~ kr0 and krn inclusive. 

The terms ~1 ( r) and ~2 ( r) on the right-hand 
side of (11) and all terms in the sum over n ex
cept the large one proportional to ( i\- 1) - 1 will 
be ~ k2rnro compared to 1/Jo( r) and can be neg
lected. We choose the parameter r 0 such that 
the term proportional to ( i\ - 1 ) - 1 vanishes with 
the required accuracy. For this we must require 

The amplitude a( k) for the energy E = n2k2/M is 
equal to 

1 ( 1 ikr0 ) a(k)=-Cl+ik l+yr0a--2-. (22) 

The assertion that, for r ~ r 0, the wave func
tions for different energies are proportional to 
one another with an accuracy up to and including 
terms ~ kr0 applies also to the bound state func
tion (/)d ( r). The function (/)d ( r) satisfies Eq. (1) 

~ «p (r) v (r) 'Li1 (r) d3r = 0, 

which implies 

(15) without the free term. The kernel of this equation 
can be expanded in powers of a I r - r' I (see 
above ) . It is then evident that 

j' 1/lo (r) v (r) I r- r' I v (r') ljl (r') iflr d3r' 
fo= ~~~------~-------------5 1/lo (r) v (r) d3r j' ljl (r') v (r') d3r' 

= {I 'llo (r) v (r) I r - r' l'llo (r') v (r') d3rd3r'. (16) 
ao .) 

With r 0 chosen in this way, it follows from (11) 
that 

f(r) ='llo (r) (17) 

up to terms ~ k2d as compared to the main term. 
Therefore the wave function 1/J( r) for r ~ r 0 is, 
with the same accuracy, 

\jJ (r) = A\jl0 (r), (18) 

where A is given by (6). 2> Substituting (18) in the 
right-hand side of (6), we obtain an equation for A 
which leads to 

(19) 

Up to and including terms ~ kr0, formula (19) can 
be written as 

A = Cl ~ ik ( 1- ik;o) ' (20) 

where n2a 2/M = Eo is the energy of the bound 
state. 

The amplitude a 0 is related to a by 

a0 =- a-1 (1 + 1/ 2r0a). (21) 

2l1f the expansion (10) diverges, it follows from the theory 
of integral equations that the function v;'(r) can, as before, 
be written in a form analogous to (11) by separating the 
large term containing (A- 1r' from the sum over n and writ
ing the rest of the sum in the form of the integral 

~ R (r, r') v (r') [~1 (r') + K2 (r')] iflr'. 

The form of the function R(r, r') is given by the form of the 
potential. The integral containing R(r, r') can be neglected 
for the same reason as the sum over n in (11). This applies 
also to the formulas obtained below in Sec. 2. The results of 
the present paper are therefore valid independently of any 
assumptions about the convergence of the expansion (10). 

'Pd (r) = N-ij) (r) = N\jl0 (r). (23) 

The factor N is determined by the normalization 
condition 

~«p~(r) d3r =I, 

substituting for (/)d ( r) in (24) the expression 

\ -afr-r'J 

J I r _ r' I v (r') «pa (r') d3r' 

\ -ajr-r'/ 
= N .) l r _ r' 1 v (r') '¢0 (r') d3r'. 

The calculation shows that the factor N has no 
terms ~ ar0, so that 

With such a choice of N, the function (/)d ( r) is 
for r » r 0 equal to 

(24) 

(25) 

2. EQUATIONS FOR THE WAVE FUNCTION OF 
A SYSTEM OF THREE IDENTICAL PARTICLES 

Let us now apply the method developed above to 
the problem of three particles (three nucleons ) 
and obtain equations for the amplitudes for the 
scattering of a particle on the bound state of the 
two other particles (scattering of a neutron on a 
deuteron) with an accuracy up to and including 
terms - aro and I ME/n2 1112ro, where n2a 2/M is 
the binding energy of the deuteron and E the en
ergy of the system. We shall assume for sim
plicity that all particles are identical and spin
less. The exact equation for the wave function of 
such a system is (n = M = 1, M is the mass of 
the particle ) 
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S:rc cos [ (k I 2 + k0) r]~ cos [(k + ko I 2) r']v (r') <pd (r') d"r' 
F (r, k) = -------'::--=----·----

k2 + k~ + kk0 - E 

\ -YkJr-r'l 

+.) ~r-r'l v(r')F(r',k)d3r' 

Srt \ cos [(k I 2 + k') r] 
+ (2n)3 J h2 + k'2 + kk' - E - i{! 

X cos [ ( k + + k') r'] v (r') F (r' ,k') d3r' d3k' 

V (r', p') eikp' 'ljJ (r', p') d3r' d3p'. (26) 

In contrast to formula (8) of STM, Eq. (26) con
tains an additional term involving the three-body 
potential V(r,p), where r = r 23, p = p1 are 
Jacobian coordinates. 

We assume that the range of the three-body 
forces R0 ,::;;, r 0• The function l/J ( r, p) in the last 
term of (26) is the wave function in the coordinate 
representation. The function F( r, k) is equal to 

F (r, k) = ~ e-i4'1jl (r, p) d3 p- (2:rc) 3 Cjld (r) ~ (k- k0), 

where k0 is the wave vector of the incident par
ticle and <Pd ( r) is the wave function of the deu
teron. 3> The quantity Yk is equal to 

r~ = 31,k2 -E, n =-ilrkl. if r~<O. 

Let us consider Eq. (26) for IE l1/ 2r 0, kr0 « 1, 
and r,::;;, r 0, and determine the function F(r, k) in 
this region with an accuracy up to and including 
terms ~ ar0• 4> For kr0 « 1, the cosines in the 
first term of (26) can be replaced by unity. The 
kernel in the second term can be expanded in 
powers of Ykl r- r' I, as we did before in solving 
Eq. (1). If we want to determine F( r, k) with an 
accuracy up to and including terms of order ~ ar0, 

we cannot replace the cosines under the integral in 
the third term of (26) by unity because of the weak 
fall-off of the function F( r, k) for 

k~JEJ'I,, k~a, kr0 ~1. 

Indeed, in this region the function F( r, k) has the 
asymptotic form [2] 

1 [ ( k )is, ( k )-is,] F (r, k) ~ CJld (r) k•cr A (t + B ~ • (27) 

where s 0 ::::; 1, and A and B are certain coeffi-

3)ln STM, F (r, k) denotes the function 

F(r, k) =' ~ e-ikp'¢ (r, p) d"p. 

4)If not indicated otherwise, the statement that one of the 
parameters JEJ'hr0 , ar0 , and kr0 is small is meant, here and in 
what follows, to imply that the other two parameters are also 
small. 

cients. Therefore, the terms neglected in the ex
pansion of the cosines make a contribution of the 
order 

to the integral over k'. 
It is usually assumed that the contribution from 

the integrals (26) (including the last term) over 
the region r ,::;;, r 0, k' ,::;;, r 01 is of the order ~ r 0 

(larger k' ,::;;, r 01 evidently correspond to pi. r 0 ). 

The validity of this assumption is, however, not 
obvious in the presence of a strong three-body 
interaction. For example, it can be shown C7J that 
the three-body forces, and hence the integrals over 
the region r ,::;;, r 0, k » r 01, can play an essential 
role if there are no two-body interactions so that 
the potential V( r, p) is different from zero only 
for R ,::;;, R0, where R2 = r 2 + %p2• Nevertheless, 
it can be shown that in the presence of resonance
type two-body interactions the usual assumptions 
about the magnitude of the integrals (26) over the 
region r ,::;;, r 0, p ,::;;, r 0 are valid for arbitrary 
three-body forces with a range R0 ,::;;, r 0• We shall 
therefore assume that the integrals (26) over the 
region r ,::;;, r 0, p ,::;;, r 0 contribute a term 
~ (aro)a-3/2, 

Within the required accuracy, Eq. (26) can there
fore be written in the form 

F (r, k) = f (k) + Q (k) + ~ 1 r-=-r· I v (r') F (r', k) d3r' 

- ( Yk- rz;o) ~ v (r') F (r', k) d3r' + B (r, k), (28) 

where r 0 is given by (16), and 

S:rc 
f (k) = k2 + k~ + kko _ E ~ Cjld (r) v (r) d3r, 

8 :rc \ v (r') F (r', k') d"r'tf'k' 
Q (k) = (2:rc)" .) k2 + k'2 + kk' - E - i6 ' 

B ( k) _ ~ \ [cos((kl2+ k')r)cos((k + k' /2) r') -1] 
r' - (2rt)" .l k2 + k'2 + kk' - E - i6 

x v(r')F(r',k')d8r'cflk' 

-~ ~ lr~r'l V(r',p)'ljl(r!,p)dar'dap. 

(29) 

(30) 

(31) 

Since only values of k' .<: r 01 are important in the 
first integral in (31), the function B(r, k) does not 
depend on k for kr0 « 1: 

B (r, k) = B (r) ~ (ar0) a-'1•. 

Equation (28) has the same structure as (3). If 
Q( k) and B( r) are regarded as inhomogeneous 
terms, the solution of (28) can be written as an 
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expansion in the functions cpn ( r) in analogy to the 
expansion (11): 

F (r, k) =A (k) 'Po (r) + B1 (r), (32) 

where 1/Jo( r) is the wave function of a system of 
two particles at zero energy given in terms of the 
cpn ( r) by formula (12), 

8 1 (r) = B (r) + ~ ~n ~)1 ~ IJln (r') v (r') B (r') d3r', (33) 
n=l n 

and the function A( k) is equal to 

A (k) = f (k) + Q (k) 

- ( Yk - r!;_(l_) ~ v (r') F (r', k) d3r'. (34) 

The sum in (33) contains a large term propor
tional to (A- 1) - 1• The analogous term in the sum 
in (11) vanishes by virtue of the choice of the pa
rameter r 0 according to (16). In the sum in (33) 
the term proportional to (A - 1) - 1 is in general 
not equal to zero and must be considered sepa
rately. In order to single out this term, we write 
B1 ( r) in the form 

B1 (r) = C (E) 'Po (r) + B2 (r), (35) 

where C( E) is equal to 

C (E) = : 0 ~ v (r) B1 (r) d3 r ~ (ar0 ) a~'!., (36) 

here a 0 is the two-body amplitude at zero energy. 
Then the quantity B2 ( r) has the property 

~ v (r) B 2 (r) d3r = 0. (37) 

It follows from (12), (33), (35), and (36) that 
B2 ( r) does not contain terms proportional to 
(A- 1) - 1 and can therefore be neglected in the 
approximation under consideration. Then 

Q(k) can in this approximation be replaced by the 
expression (38), since the integrals over the region 
k' ..<: r 01 give a contribution ~ ar0 (see above). We 
then obtain the STM equation for x ( k). 5> 

This is easily seen by writing f(k) and Q(k) 
out explicitly. Let us denote x(k) in the STM 
approximation by x0(k) and rewrite (40) in the 
form 

'X (k) =- _cx -- [f (k) + Q (k) + C (E)]+ 'o2"rk Xo (k). (42) 
lk- (l 

Equation (42) could be regarded as an equation for 
the determination of x(k), if we could substitute 
the expression (38) in the integral (30) for Q(k). 
However, this we are not allowed to do, since the 
integrals over the region k' ..<: r 01 [where (38) is 
not valid) make a contribution ~ ar0• Therefore 
we write Q( k) in the form 

Q (k) = ~ [R (k, k') - R (0, k')l v (r') F (r', k') d3r'd3k' 

+ ~ R (0, k') v (r') F (r', k') d3r' d3k', 

R (k, k') = 8n (2nt3 (k2 + k' 2 + kk' - E- ibt1 • (43) 

In view of the fast convergence of the integral 
we can neglect the contribution from the region 
k' ..<: r 01 in the first term of (43) and substitute 
(38) for F(r, k). The second term is independent 
of k. Let us denote it by C1 (E): 

CI(E) = ~R (0, k') v (r') F (r', k') d3r'd3k'. (44) 

Then we obtain the following equation for x ( k): 

x (k) =- _cx_[ f (k) + \' [R (k, k') 
lk- (l .) 

- R (0, k') l v (r') 'Po (r') 'X (k') d3r' d3k' 

+ cl (E) + c (E) J + 'o;k 'Xo (k). (45) 

F (r, k) ='X (k) 'Po (r), 

X (k) = A (k) + C (E). 

(38) Since x0(k) has the asymptotic form (27) for k- oo 

(39) 

If (38) is substituted in the integral of (34) and 
A(k) expressed through x(k) according to (39), 
one finds that up to and including terms ~ ar0 

X (k) =- _cx_ [f (k) + Q (k) + C (E)] 
lk- (l 

Clro r k 
---z rk-cx[f(k)+Q(k)]. (40) 

We show now how the STM equation is obtained 
from (40). In this approximation, terms ~ ar0 

must be neglected. Then (40) reduces to 

'X (k) =- _cx_ [f (k) + Q (k)]. (41) 
lk- (l 

The function F(r, k) under the integral (30) for 

S)The equations proposed by Minlos and Faddeev[s] differ 
from Eq. (41) by the term -a.(yk- ar'C(E), where C is a 
function of k and x(k): 

C = ~ L(k, k') X(k') d8k'. 

The function L(k, k') is subject only to very general restric
tions and arbitrary otherwise. Minlos and Faddeev propose the 
assumption that C is constant for k « R~' and a function of 
k for k - R~', where R0 is some parameter which evidently 
has the meaning of the range of the three-body forces. Here 
we must, of course, assume that R0 >> r0 , since otherwise we 
would go beyond the accuracy of our approximation in taking 
account of the dependence of C on k. If we assume that C 
does not depend at all on k for kr0 « 1, it can be shown that 
lj!(k) must satisfy the STM equation and the constant C must 

) -'/, be of the order -(ar0 a , as assumed in the present work. 
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and the last term in (45) behaves like kx0 ( k) for 
large k, we may expect that for k- oo 

ferent energies are proportional to each other with 
an accuracy up to and including terms ~ oT0• This 
condition on x(k) allows us to remove the arbitrar
iness in the solution of (47). 

\ Let us write the function x(k) in the form 
Therefore the integral ~ R (k, k') x (k') d3k' diverges 

. X (k) = Xo (k) + x' (k), (49) 
[although the integral \' [ R (k, k') - R (0, k') l X (k') d3k' h ( k) . f h d ( ) -3/2 Follow-j w ere x' 1s o t e or er ~ ar0 CY • 

exists]. However, this integral can be given a ing STM, [l] we write x0(k) in the form 6l 

meaning by introducing a convergence factor under 
the integral, for example, k-u, with u > 0, where 
u - 0 after the evaluation of the integral. In the 
following, all integrals of this type are to be under
stood in this sense. 

Equation (45) can be treated with the method 
of [2]. The calculations are completely analogous 
to those given in the appendix of this reference. 
Equation (45) has a unique solution which has the 
property 

~ R (0, k') v (r') 'lj10 (r') X (k') d3r'd3k' = C1 (E) + C (£). 
(46) 

This equation is a consequence of the fact that the 
asymptotic form of x(k) for large k has no term 
independent of k. 

If we now consider instead of (45) the equation 

X (k) ·~~- _cr_ (f (k) + a 0 \' R (k, k') X (k') d3k'] 
lk-11, j 

rnr k ( ) +-2-xo k' (47) 

where a0 = ~v (r) 'lj1 0 (r) d3r is the two-body ampli

tude at zero energy, we see that this equation dif
fers from the STM equation only by the last term 
and will therefore also have a nonunique solution, 
just like the STM equation. One of the solutions 
of (47) will coincide with the solution of (45), since 
the latter satisfies (47) identically owing to (46). 
Equation (47) can thus be regarded as an equation 
for the determination of x(k) if we choose that 
solution which satisfies the condition (46). 

If we write out C1 ( E ) explicitly, (4 7) takes on 
the form 

~ R (0, k') v (r') ['tj10 (r') x (k') - F (r', k') 1 d3r' d3k' = C (£). 

(48) 

Only large values of k' ~ r 01 are important in the 
integral on the left-hand side of (48) and in the in
tegrals defining C ( E ) , since F ( r', k' ) = lf!o ( r' ) 
x(k') for r ~ r 0 and k'r0 « 1. But in the region 
r ~ r 0, p ~ r 0 (i.e., k ~ r 01 ) the wave functions 
for different energies are proportional to each 
other. Hence Eq. (46) can be satisfied only if, in 
the region of large k, the functions x(k) for dif-

00 

a (k, k0) = ~ (2! + 1) Pt (cos 8) az (k, k0). (50) 

The function x' ( k) is written in a similar form: 

' (k) = - ct ~ a, t, :n:L'l (k, ko)-
X 'Jrt , 2 k2 . ~ • - F<-•0 -tu 

00 

~ (k, k0) = ~ (2! + 1) Pt (cos8) ~z(k, k0). (51) 

The function .6. ( k, k0 ) satisfies the equation 

1 ~ L'l (k', k 0 ) d'k' 
-1-~ k2 + k' 2 + kk'- E- io -,-2 --2--. " k -- k0 - iO 

(52) 

In deriving (52) we must take into account that 
a( k, k0 ) satisfies the STM equation. 

Using (51), we can obtain equations for .6-z(k, k0 ). 

For l r= 0, these equations halle, according to [2J, 
a unique solution. The equation for .6.0 ( k, k0 ) has 
a nonunique solution and must be considered in 
more detail. It has the form 

2 r k2 + k'2 + kk'- E- io L'l 0 (k', ko) k'2dk' (53) 
+- )t J In k2 + k'2 - kk'- E- io k' 2 - k6- io kk' . 

0 

Equation (53) can be investigated using the method 
of [2]. In particular, we can determine the asym
ptotic form of .6.0(k, k0 ) for k » (J E 1112, a): 

~o (k, ko) ~A E (so) [ \; (s0 , k) + dE (s0) (k/a)is,] 

+ AE (- S0) [\; (- S0 , k) +dE(- s0) (k/a)-is,], (54) 

\; (s0 , k) = (ar0)(\ (s0) (k/a)is•+1 + (ar0) (k/a)i5 • b2 (s0) In (k /a), 

(55) 

where A E ( s 0 ) and A E ( - s 0 ) are coefficients in 
the asymptotic form of a 0 ( k, k0 ): [ 2] 

6)The function a(k, k0) defined by (SO) coincides with the 
function a(k, ko) defined by (50) coincides with the function 
a(k, ko) of STMJ'] 
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ao (k, ko) ~ AE (s0) (kla)is, + AE (- s0) (kla)-is,, s0 ~ 1. 
(56) 

The quantities o1 ( s 0 ) and o2( s 0 ) in (55) are 
numerical coefficients which are independent of 
the energy. We shall not write down the formulas 
for 61 (so) and o2 ( s 0 ) in view of their complexity, 
especially since their explicit form is not impor
tant for us. 

Since the solution of (53) without the free term 
has the asymptotic form (56) and an arbitrary mul
tiple of the solution of the homogeneous equation 
can be added to the solution of the inhomogeneous 
equation, which has the asymptotic form (54), one 
of the coefficients dE(s 0 )"' ar0 and dE(-s0 ) 

"' aro, for example, dE(s 0), remains arbitrary. 
Then dE (- s 0 ) is determined by this arbitrary 
parameter through the condition of joining with 
6..o ( k, ko) at small k. Since large values of k' "' k 
are important in the integral (52) if k is large, the 
asymptotic form (54) can be verified immediately 
by substituting it into (53). 

The arbitrary constant dE(s 0 ) can be deter
mined in principle from the requirement that for 
large k the functions x ( k) belonging to different 
energies must be proportional to each other. This 
implies, according to the definitions (49) to (51), 
that the quantities a0 (k, k0) + ~0 (k, k0) for different 
energies must be proportional to each other in the 
region of large k. According to (53) and (55) we 
have for kr0 ~ 1, ka-1 ~ 1, k 1 E !-'/, ~ 1' 

ao (k, ko) + ~0 (k, k0) 

~A£Cso) [I+~:(;~~)] [~(so, k) + (+f']+ AE(-s0 ) 

X [ 1 + A:E(~0~0 )] [~ (-s0, k) + ( ~ ris,J. (57) 

In deriving (57) we must take into account that 
dE( so) t( so, k) and dE( s 0 ) t(- s 0, k) are second 
order quantities. In order that the expressions 
(57) for different energies be proportional to each 
other with an accuracy up to and including terms 
"' ar0, we must require that the relation 

AE (so) [1 +dE (so) I AE (s0)] I AE(;_ s0) 

x[l + dE(-s0) I AE (- s0)l = ~ (58) 

is independent of the energy. Within our limita
tions of accuracy, we can write (58) in the form 

dE (so) I AE (so)- dE(- s0) I AE (- s0) = 13113 0 , (59) 

where {3 0 = AE(s0 )/AE(-s0 ). {30 is independent of 
E according to [2]. 

In order to determine the constant {3 we must 
fix one of the three-particle amplitudes or the en
ergy of the bound state of the three particles. Let 
us fix, for example, the energy of the bound state, 

Eo. The function x( k) for the bound state (triton) 
satisfies (47) with f(k) = 0. Hence the function 
6..0 ( k, k0 ) for the bound state satisfies (52) with 
E = Eo, k3 = % ( E3 + a 2 ), whereas the function 
a 0(k, k0 ) for triton satisfies Eq. (52) without the 
free term. Thus the arbitrariness in the solution 
of (53) due to the addition of the solution of the 
homogeneous equation reduces in this case to the 
addition of the term A.a0(k, k0 ), where A. is an ar
bitrary constant "' ar0• This implies the replace
ment of the function 

X (k) ~ ao (k, ko) + ~0 (k, ko) 

by 
(1 + /..) [ao (k, k0) + ~0 (k, k0)1 

(since the quantity 11.6..0 "' r5). The arbitrariness 
in the solution of (52) for the bound state is there
fore no serious difficulty at all and amounts only 
to an arbitrariness in the normalization of x( k, k0 ). 

This arbitrariness does not affect the ratio of 
the coefficients in the asymptotic form. Hence the 
value of {3 is also unaffected. In solving (52) for 
triton we can, for definiteness, require, e.g., that 
the tritium wave function be real and normalized 
to unity like the wave function in the first approx
imation (which we also regard as real). These 
requirements allow us, in principle, to make a 
unique choice of the solution of (53) for the deter
mination of the corrections to the triton wave 
function. In order to determine all desired quan
tities we must, therefore, find the triton wave 
function according to the recipe discussed above, 
determine the value of {3, and remove the last 
arbitrariness in the amplitude with an accuracy 
up to and including terms "' ar0 with the help of (59). 
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