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A study is made of the resonance properties of restricted plasma entities; these properties 
are due to the oscillatory nature of the internal thermal motion of electrons. As an illustra
tion, the interaction of an alternating field is considered with a plasma localized in a one
dimensional rectangular potential well. 

IN studying the possibilities of controlling the mo
tion of plasmoids by means of alternating electro
magnetic fields [i-S] it is assumed that the displace
ment of the particles in the plasmoid during one 
period of the high-frequency oscillation is small 
compared with both the length characterizing the 
nonuniformities in the field and with the dimen
sions of the plasmoid itself. By the same token, 
any influence of the internal thermal motion on the 
polarization properties of the plasma, apart from 
that associated with particle collisions, is effec
tively ignored. However, even in the absence of 
collisions in the plasma, this motion can be a very 
important factor which can influence the efficiency 
of interaction of a plasmoid with an external field. 

The character of the thermal motion of elec
trons in a bounded plasma is chiefly determined 
by the structure of the force fields proposed for 
achieving stability of the given plasma configura
tion. The stabilizing action of these fields, as a 
rule, amounts to the creation of some kind of ef
fective potential well for the charged particles. 
For example, such potential wells (at least for 
some directions of motion) are formed in so called 
magnetic bottles with constant or rotating fields 
and also in certain configurations of high frequency 
fields. In addition a potential well for electrons 
can be formed by the plasma Coulomb self field 
produced by perturbations of the quasi -neutrality 
at its boundary. 

Since electrons localized in a potential well ex
ecute a finite oscillatory motion within it, they can 
be considered as a given aggregate of oscillators1> 

1llt is interesting to note that such oscillations are com
pletely analogous to those used in electronic devices similar 
to the Barkhausen-Kurtz generator. On this basis, the study 
of the oscillating properties of bPunded plasma objects (see 
also[7 ]) is of definite interest from the point of view of pos
sible applications in high-frequejncy electronics. 

which is specified by a certain distribution of natu
ral frequencies. If the most probable frequency of 
this distribution, n, is near the frequency of the 
external field, then it is reasonable to expect that 
the interaction of the field with the plasmoid will 
have a distinctly resonant character. 

It is clear that the most strongly marked reso
nance phenomenon occurs in the case where the 
potential well is parabolic in form (in such cir
cumstances all the oscillators are linear and have 
the same natural frequency). Since, however, most 
proposed methods of obtaining stable plasmoids de
pend on the use of stabilizing fields over only a 
comparatively narrow boundary region, it is of 
interest to consider potential wells which are ap
proximately rectangular in shape. 

The polarizability of a plasmoid localized in 
such a well is investigated below in the simplest 
case. We consider the interaction of an external 
quasi-uniform electric field, E = x0Eeiwt, with a 
plasma isolated between two parallel planes x = 0 
and x = L (the solution of this one dimensional 
problem can easily be generalized to the case of 
a three dimensional "potential well"). We assume 
that on the boundary planes the electron distribu
tion function satisfies the boundary conditions of 
specular reflection 

t<x) =t<-x). (1) 

The possibility of setting up such a boundary 
condition needs to be treated with reservation. Al
though specular reflection and the contrasting con
dition of diffuse reflection are often used in the 
study of the properties of a semi-bounded plasma 
[B,HJ, they are strictly speaking not applicable in 
actual typical cases, since they imply the produc
tion of sharp decreases in the plasma density over 
distances ~L. which are much smaller than the 
Debye radius D ~ vm/w0 (vm is the most prob-
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able thermal velocity of the electrons, and w0 is 
the plasma frequency). In actual fact, "instanta
neous" reflection at the boundary requires that 
the inequality ~L/vm « 1/ w be satisfied, which 
for w0 ~ w lead to ~L « D, while in the case when 
w0 » w and ~L ~ D, it may be necessary to take 
the currents and charges within the boundary layer 
itself into account. As a consequence, it should be 
borne in mind that results obtained by using the 
stated boundary condition are only illustrative in 
nature and give only a qualitative idea of the role 
of the boundary effects. 

For simplicity it is assumed further that 1) the 
particle number density in the plasma is low ( w0 

« w ), so that the external field is almost undis
turbed by it; 2) the electron collision frequency 
v « w; 3) the amplitude of the field E is small 
enough so that the problem can be solved in a 
linear approximation. 

The kinetic equation for the non-equilibrium 
term f1eiwt which is added to the stationary elec
tron distribution function f0 is 

iwf -1- );i!b_ + _!__£ a~fJ_ = -vf 
1 I ax nz ax 1 

( e is the charge and m the mass of the electron), 
and has as a solution satisfying boundary condition 
(1) the function 

f _ cE a{o { 1 
1 . - itnoJ a.~ t sin (wL I x) exp(-~~) [ exp CfL) --I J -I} 

w =W- iv. 

From this result, it is not difficult to find the 
current density averaged over the range 0 ::::; x ::::; L * 

iav= aE, 
+co • ~ 

-=.- c2 ( • ~ 2x2 ato wL • ) 
J =' ~- N -j- --~ tg -.- dx , 

:mw • wL ax 2x 
-co 

where N is the equilibrium electron number den
sity. Taking into account the fact that the function 
under the integral sign has singularities near the 
real axis ( v « w) and assuming that the distribu
tion function f0 is Maxwellian, we obtain the follow
ing expressions for the equivalent dielectric con
stant 

e =' I + 4rra/iw = e' - ie"; 

' -I . 1 G w~ ~ (2 I I )-4a ( (JJ ) e -- 1 -:-rt:!- n~ LJ n -r 2n+1 Q , 
n=O 

, 16 w~ w 00 
-5 ( w2 ) 

r:: = n';, -w ~ (2n + I) exp - n• (2n + 1)2 , 
n=o 

~/n 

Gil m = I - 2 + e-(Ejn)' ~ e2'dz, 
0 

As is evident from the plots of the dependence 
of E' and E" on w/Q, for a fixed ratio w0 /w, 

*tg = tan. 

E' -1 changes sign near the point w/Q = 1, and 
E" reaches its maximum value of 1.2 w5/w 2• The 
example considered shows that even in the case 
where the natural oscillations of the electrons in 
the plasmoid are markedly different from har
monic and have a frequency spectrum extending 
over a wide range, the resonance phenomena as
sociated with these oscillations are fairly pro
nounced and can be used in particular for control
ling the phase difference between the current in a 
plasmoid and the external field. As a result, addi
tional possibilities for increasing the efficiency 
of so-called radiation methods of plasma accel
eration become apparent. 

Furthermore, the resonance effects considered 
can be of importance in the scattering of radio 
waves from various kinds of ionization disturbances 
in the atmosphere. The possibility of using the re
sults obtained for studying the dispersion proper
ties of certain long-wave transmission lines filled 
with plasma should also be noted. 

I thank M. A. Miller and M. I. Peterlin for their 
valuable advice and observations. 
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