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A Lorentz invariant formulation of quantum electrodynamics is found which does not involve 
potentials, but only electromagnetic field intensities. 

1. Unlike the equations of Maxwell's classical 
electrodynamics, the equations of quantum elec­
trodynamics have so far not been successfully 
written in terms of electromagnetic field intensi­
ties alone. The quantum equations of motion or­
dinarily involve the four-vector potential Aw 1> 

This fact leads to difficulties. For example, it is 
well known that the Maxwell equations for AJJ. can­
not be quantized. In fact, in principle they deter­
mine the AJJ. only up to the four-gradient of an ar­
bitrary function, and this means that there is a 
component in AJJ. for which there is no equation 
of motion. [4] Therefore one cannot write for the 
AJJ. commutation relations which are not in con­
tradiction with the Maxwell equations. 

The standard approach is that having fixed the 
gauge in some way or other one gets equations 
which determine the potentials AJJ. more rigidly 
and therefore admit of quantization. The short­
comings of such formulations have been widely 
known for a long time. The clearest and most 
consistent of such formulations is that in the Cou­
lomb gauge ( Dirac ) . It is not explicitly covariant, 
however, and unlike the Maxwell theory it requires 
that one treat separately the interactions through 
the transverse field and the Coulomb field. In the 
Fermi formulation it is necessary to introduce 
the unphysical indefinite metric (and besides, 
this can still not be done in an explicitly covari­
ant form). 

Therefore many authors attempt [5- 12] to over­
come the difficulties of quantizing the Maxwell 
equations by prescribing commutation relations 
not for the AJJ. but only for gauge-independent 
quantities, for example the field intensities. In 
such theories, however, either the vector potential 
is not completely eliminated and operating with it 
is difficult, or else explicit Lorentz covariance of 

l) At the same time it is well known that in a number of 
cases the results of quantum electrodynamics depend only on 
the intensities (cf., e.g., ['·']). 

the theory is lacking. Some authors have even 
been inclined to regard these difficulties as an in­
dication that in quantum theory, unlike classical 
theory, the vector potential has an independent 
significance (see [13], and also [12 ]). 

In the present paper it is shown that quantum 
electrodynamics can be constructed from begin­
ning to end in terms of the electromagnetic field 
intensities and in explicitly covariant form. This 
formulation is based on our previous work. [4] 

The interaction of a charged field with photons 
here has an apparent nonlocal nature and can be 
written in many equivalent forms. The entire 
treatment is carried out in the interaction repre­
sentation. Its purpose is not to replace the usual 
Feynman scheme of calculation, but to demonstrate 
that all calculations can be carried out in general 
without reference to the vector potential, and that 
in this sense there are no differences between the 
classical and quantum theories. 

2. We assume that in the interaction represen­
tation the free-field operators obey the Maxwell 
and Dirac equations: 

aF .... vlax .... = o, 

(r .... ajax.... + m) 'ljl = 0, 

(1) 

(2) 

(3) 

(4) 

where F JJ.V is the operator for the electromagnetic 
field intensities and lj! is the operator of the spinor 
field. There is consistency between these equations 
and the well known commutation relations :2> 

r a a a a 
[F!J.V (x), PAP (y)l = axay 6vp -ax ay {)!J.P 

._ 1J. A v A 
a a a a ., . -a -a-6vA +-a- -a- 61J.AJ t6. (x-y), x.... Yp XV Yp 

(5) 

2)In the introduction we already mentioned the well known 
fact that no commutation relations which are not in contradic­
tion with the Maxwell equations can be written for the poten­
tials. 
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{'(1 (x), '(1 (y)} = 0, {'11 (x), ,P (y)} = - iS (x - y). (6) 

Equation (1) can be derived as the condition for 
a relative extremum of the Lagrangian 
- Y4j d4xFJ.Lv(x) FJ.Lv(x) under the conditions (2) 
and (3). The commutation relations (5) can be ob­
tained by the method of Peierls. [14 ] The Fourier 
expansion for FJ.Lv(x) and the commutation rela­
tions in the p representation are given in the 
Appendix. 

3. As the interaction Lagrangian we take 

L(x) = ie:1j)(x)y~'(l(x)0-1 -aa fp.v(x):. (7) 
xu. 

By the operator symbol o-1 we mean the operation 
of convolution with the Green's function of the 
d' Alembertian operator: 

o-1/ (x) = ~ dy G (x - y) I (y), 

0 G (x- y) = fJ (x - y). (8) 

We do not need to remove the arbitrariness in the 
choice of the Green's function. As we shall see, 
any choice leads to the same results. 

We note also that from Eq. (1) there follows the 
vanishing of the quantity DO - 1 oF J.LV /oxw but not 
the vanishing of 0-1 oF J.LV /oxw We shall at the 
beginning stipulate the use of the operation o-1. 

We shall require of the S matrix only that it 
satisfy the conditions of Lorentz invariance, uni­
tarity, and causality, in the spirit of the Stueckel­
berg-Bogolyubov approach. [15] We write it in the 
form 

(9) 

where the symbol T* means only that in the nor­
mal form of the S matrix one must take for the 
quantities 0-1 oF J.LV /oxJ.L pairings of the form 

(10) 

and for the spinor field one takes the usual pair­
ings. 3> The propagation functions (10) correspond 
to electrodynamics in the Landau-Khalatnikov 
gauge. The derivative term in Eq. (10) is unessen­
tial, since it drops out because of conservation of 
current and the vanishing of the equal-time com­
mutator of two currents. Thus all of the coefficient 
functions are the same as in the standard form of 

3)It can be verified that with this choice of the pairings the 
conditions of Lorentz invariance, unitarity, and causality are 
satisfied in each order in the coupling constant. 

electrodynamics. We note that the pairing (10) can 
be regarded as the result of the action of differen­
tial and integral operators on the pairing of the 
F J.LV defined by Hori [2]: 

-,--~ (a a a a 
fp.v (x) F~.p(y) = a-a- ~vp- -a- a-- ~P.P xp. Y1. xv Y1. 

---~v).+--~p.l. -t)u X-y). a a a a )< . Ac( 
axp. ayp axv ayp 

Instead of postulating Eq. (10) it would perhaps be 
more consistent to construct the S matrix for the 
nonlocal Lagrangian (7) by the method of Khir­
zhnits [16] with Tg-ordering. 

4. In the normal form of the S matrix the only 
unusual element will be the N-products 

. o-1 a F ( 1) o-1 a F ( n) . • - 1- v1p.1 X • • • -- v p. X •• ax axn n n 
vl vn 

(11) 

We shall show that the calculation of the matrix 
elements from such N-products causes no difficul­
ties. To do this we first define the photon states 
as the result of the action of the negative-fre­
quency part of the electromagnetic-field-intensity 
tensor on the vacuum state. Thus a one-particle 
state with definite momentum will be of the form 4> 

(12) 

with the orthogonality and normalization condition 

( ___.!_ f;v (p) 'l'o, ....!.._ f~P (q) 'I'o) 
Po qo 

1 = 2 {pp.p).fJvp- pp.ppfJv,,- PvPI.()p.p + PvPp()p.l.} () (p - q). 
Po 

The state of a photon is uniquely determined by v 

giving either its electric field intensity Em = iFm4, 

or its magnetic field intensity Hm = iFm 4, or 5> 

F J.LV ± F J.LV• i.e., E ± iH. The first possibility 
(which we shall use) corresponds to the normal­
ized state vector 

(The other possibilities can also be written out in 
an obvious way. ) The fact that the state vector is 
normalized is expressed in the form 

= ( ~mn - P;;n ) ~ (p - q) • (14) 

Contraction on m and n (summation over the po-

4)The operators ffLv and their properties are defined in the 
Appendix. 

S)These last quantities transform according to the irredu­
cible representations (1, 0) or (0, 1) of the homogenous Lorentz 
group. 
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larizations) gives 26 (p- q). The factor 2 corre­
sponds to the number of independent spin states. 

By means of the formula 

[ o-1 a~ F I'" (x), ftp (q) J = i(bvAqp- bvpqA) y ;iqx 
I' ( :rt)3 2qo 

[which follows from Eqs. (A.2) and (A.5)] we cal­
culate the matrix element 

(15) 

Thus in the Feynman diagram the factor corre­
sponding to a photon with polarization A. and coup­
pled with the current jv is qij 1( 6v~tq4 - 6v4qA.). 
With this the problem of calculating the matrix 
element from the normal product (11) is solved. 
After the matrix element has been squared the 
summation over photon polarizations gives 

- q"Q 2 (bvv•q~- bv4qv•q4- ~v'4qvq4)• (16) 

When we use the conservation of current and the 
(single-time) commutativity of currents only the 
first term remains. We thus arrive at the Feyn­
man rule for summing over polarizations. If we 
form the photon states from the vacuum by means 
of the operators c + ( ps ) ( cf. Appendix), then we 
can write the matrix element of the S matrix for 
a process involving n photons in the following in­
tuitive form: 

<fJSJ i) -u ... r~ .... Y~'n •.. uP~'•• (q1s1) F~'-,4 (q2s2) 

... F l'-n4( QnSn) • (17) 

One can also obtain equivalent forms containing 
v \v 

F J.lY or F J.IY ± F J.I.V instead of F JlV· 
5. Thus we have expounded a formulation of 

quantum electrodynamics in which the vector po­
tential has never been mentioned. We have used 
only the intensities E and H, which are experi­
mentally measurable and uniquely defined by the 
Maxwell equations. 

This formulation is based on our previous 
work [4] in which we gave a decomposition of the 
vector potential into gauge-independent and gauge­
dependent parts: 

A~'= (A~'- o-1 _a __ a_Av) + 0-1 _j_ _j_ Av 
~XI' axv axil- ax" 

- o-1 a F + o-1 a a A - -a- "~'- · -a--a "' xv xtJ. x.., 

The gauge-dependent part can be eliminated from 
the Heisenberg Lagrangian by the transformation 
1/J- exp ( iD - 1 BAv /Bxv )1/J, and indeed the result 

of this transformation is that the interaction La­
grangian takes the form (7). 6> 

The potential All is defined uniquely up to a 
four-gradient, and therefore is in general unmeas­
urable. Our definition of the gauge-independent 
part is also not without some arbitrariness. (One 
can take for the operator D - 1 an integral operator 
whose kernel is any Green's function of the 
d' Alembert equation.) This arbitrariness indeed 
remains in the formulation of quantum electrody­
namics which we have given here. It does not re­
late, however, to the operator which describes the 
photons ( F Jll' ) , but relates to the choice of one of 
the equivalent forms for writing the S mat.cix in 
terms of these operators. 

Recently we received a preprint of a paper by 
DeWitt [18] written in a spirit much like that of our 
own paper, and proposing a different method for 
eliminating the potentials. We take this occasion 
to express our sincere gratitude to Professor 
DeWitt. 

APPENDIX 

We write out the three-dimensional and four­
dimensional expansions for the field-intensity 
tensor Fw(x): 

F ~'-" (x) = \ ,r dp , {f1,v (p) eipx + f~v (p) e-ipx} (A.1) 
• y (2:rt)3 2po 

(here and in what follows Po = I p I ) and 

F (x) = (' d•p {f (p) eipx + f\ (p) e-ipx}. (A.2) 
!'-" .\ y (2:rt)" !'-" I' 

The operators fJlv and fJlv satisfy the Maxwell 
equations 

and are connected by the relations 

f~'" (p) = fJ (p2) 8 (Po) Jf2po f~'-" (p), 

fl'-" (p) = ~ dpofl'-v (p) ~-
The commutation relations for these quantities are 

[fl'-v (p), ftp (q)l = {p!'-pAflvp - pl'-pPfJVA 

- PvPAfJ!'-P-f-PvPpfl~'-A} fJ (p - q), 

Po= IPI; 
[fp.• {p), fA~ (q)J = {p!'-pAfJVp- PppPflvA- PvPAfJI'-P 

+ PvPPfJ!'-A} 6 (p- q) 6 (Po) f1 (p2); 

(A.3) 

(A.4) 

6)The equations of motion in the Heisenberg representation 
are then 
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[{p.v (p), f~p (q)l = {Pp.Pt..Ovp- pp.ppOv),- PvPt..Op.p + p.ppOp.t..} 

X o (p - q) 6 (p0) o (p2) Jl2/i0• (A. 5) 

The commutators not written are zero. In the use 
of the creation and annihilation operators f~ 11 ( f~v) 
and f 1111 (f1111 ) it is understood that the spin state of 
the photon is characterized by the pair of indices 
(J1V). We can go over to the expansion 

2 

fp.v(P) = 2] c(ps) Fp.v(ps), (A.6) 
S=l 

where s is the index of the spin state, F 1111 (ps) 
are classical solutions of the Maxwell equations 
(wave functions of the photonC17 J), and c(ps) are 
annihilation operators with the commutation rela­
tions 

[c(ps), c+(qs')l = ~ •• ,o(p - q). (A. 7) 

In terms of these quantities the Fourier expansion 
(7) can be written in the form 

~ 

Fp.v (x) = ~ V dp3 2] {c (ps) Fp.v (ps) eipx 
(2l1) 2po s=l 

+ c+ (ps) F~. (ps) e-ipx}. (A.8) 

We also give here a useful formula for the sum 
over spin states ( unnormalized) 

2 

2] Fp.v (ps) F~P (ps) 
S=l 
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